[1]李纪委, 刘庆锁. 超低碳贝氏体钢的研究现状[J]. 天津理工大学学报, 2008(1): 56-59. Li Jiwei, Liu Qingsuo. Research status on ULCB steel[J]. Journal of Tianjin University of Technology, 2008(1): 56-59. [2]田亚强, 田 耕, 郑小平, 等. 低碳高强贝氏体钢的研究现状[J]. 钢铁研究学报, 2018, 30(7): 505-514. Tian Yaqiang, Tian Geng, Zheng Xiaoping, et al. Research status of low carbon high strength bainitic steel[J]. Journal of Iron and Steel Research, 2018, 30(7): 505-514. [3]胡张薇, 徐 光, 王 力, 等. C-Mn-Si-Mo系低碳贝氏体钢连续冷却转变曲线[J]. 金属热处理, 2014, 39(9): 111-113. Hu Zhangwei, Xu Guang, Wang Li, et al. Continuous cooling transformation curves of C-Mn-Si-Mo series low carbon bainite steel[J]. Heat Treatment of Metals, 2014, 39(9): 111-113. [4]Garcia C I, Deardo A J. Ultra-low carbon bainitic steels for heavy plate applications[R]. David Taylor Research Center, U. S. Navy, 1990. [5]缪鹏飞, 童彦刚, 郭彦兵. 超低碳贝氏体钢中合金元素的作用及其对焊接性的影响[J]. 热加工工艺, 2010, 39(20): 29-32, 35. Miao Pengfei, Tong Yangang, Guo Yanbing, et al. Effect of alloying elements on ultra-low-carbon bainite steel and its influence on weldability[J]. Hot Working Technology, 2010, 39(20): 29-32, 35. [6]赵路遇. 超低碳贝氏体钢及其在舰船上的应用[J]. 材料开发与应用, 2006, 21(2): 34-37, 43. Zhao Luyu. Ultra-low carbon bainite steel and its application in naval-ship[J]. Development and Application of Materials, 2006, 21(2): 34-37, 43. [7]Lis A K, Lis J, Jeziorski L. Advanced ultra-low carbon bainitic steels with high toughness[J]. Journal of Materials Processing Technology, 1997, 64(1-3): 255-266. [8]史 远, 戴观文, 安治国, 等. 高强贝氏体非调质钢的奥氏体连续冷却相变[J]. 金属热处理, 2019, 44(2): 25-29. Shi Yuan, Dai Guanwen, An Zhiguo, et al. Continuous cooling transformation of austenite for high strength bainitic non-quenched and tempered steel[J]. Heat Treatment of Metals, 2019, 44(2): 25-29. [9]王建泽, 康永林, 杨善武, 等. ULCB钢相变产物粒状与板条状贝氏体组织性能研究[J]. 材料工程, 2006(S1): 252-254, 258. Wang Jianze, Kang Yonglin, Yang Shanwu, et al. Study on microstructure and properties of granular bainite and bainite ferrite of ULCB steel transformation production[J]. Journal of Materials Engineering, 2006(S1): 252-254, 258. [10]蒋 波, 霍朝霞, 周乐育, 等. 奥氏体变形和Mn对42CrMo钢连续冷却相变组织的影响[J]. 材料热处理学报, 2014, 35(8): 119-124. Jiang Bo, Huo Chaoxia, Zhou Leyu, et al. Effect of austenite deformation and manganese content on microstructure of continuous cooling transformation of 42CrMo steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(8): 119-124. [11]龙晓燕, 张福成, 康 杰, 等. Mn对无碳化物贝氏体钢组织和性能的影响[J]. 金属热处理, 2017, 42(11): 29-35. Long Xiaoyan, Zhang Fucheng, Kang Jie, et al. Influence of Mn on microstructure and mechanical properties of carbide-free bainitic steel[J]. Heat Treatment of Metals, 2017, 42(11): 29-35. [12]叶建军. 合金元素对ULCB钢组织和机械性能的影响[J]. 宽厚板, 2004(6): 40-45. Ye Jianjun. Effect of alloying elements on structure and mechanical properties of ULCB steel[J]. Wide and Heavy Plate, 2004(6): 40-45. [13]王建泽, 康永林, 杨善武, 等. ULCB钢相变产物粒状与板条状贝氏体组织性能研究[J]. 材料工程, 2006(S1): 252-254, 258.Wang Jianze, Kang Yonglin, Yang Shanwu, et al. Study on microstructure and properties of granular bainite and bainite ferrite of ULCB steel transformation production[J]. Journal of Materials Engineering, 2006(S1): 252-254, 258. [14]黎先浩, 康永林, 陈林恒, 等. CSP生产600 MPa级低碳贝氏体钢的相变[J]. 北京科技大学学报, 2009, 31(6): 701-707. Li Xianhao, Kang Yonglin, Chen Linheng, et al. Continuous cooling transformation of 600 MPa grade low carbon bainite steel produced by CSP process[J]. Journal of University of Science and Technology Beijing, 2009, 31(6): 701-707. [15]周千学, 黄海娥, 杨志婷. 3.5Ni低温钢中Mn元素的强韧性作用研究[J]. 武汉科技大学学报, 2013, 36(5): 379-382. Zhou Qianxue, Huang Haie, Yang Zhiting. Toughening effect of Mn in 3.5Ni low temperature steel[J]. Journal of Wuhan University of Science and Technology, 2013, 36(5): 379-382. [16]桂晓露, 刘 蓉, 高古辉, 等. Cr元素对贝氏体钢连续转变规律的影响[J]. 材料热处理学报, 2016, 37(10): 154-158. Gui Xiaolu, Liu Rong, Gao Guhui, et al. Effect of Cr on continuous cooling transformation characteristic of bainitic steels[J]. Transactions of Materials and Heat Treatment, 2016, 37(10): 154-158. |