[1]Karr U, Sandaiji Y, Tanegashima R, et al. Inclusion initiated fracture in spring steel under axial and torsion very high cycle fatigue loading at different load ratios[J]. International Journal of Fatigue, 2020, 134: 105525. 1-105525. 11. [2]徐德祥, 尹钟大. 高强度弹簧钢的发展现状和趋势[J]. 钢铁, 2004, 39(1): 67-71. Xu Dexiang, Yin Zhongda. The tendency to high strength of spring steels and the effect of alloying elements[J]. Iron and Steel, 2004, 39(1): 67-71. [3]郝立群, 惠卫军, 项金钟, 等. 两种不同冶金工艺生产的60Si2CrVA弹簧钢的高周疲劳性能[J]. 钢铁, 2009, 44(2): 64-68. Hao Liqun, Hui Weijun, Xiang Jinzhong, et al. High-cycle fatigue properties of 60Si2CrVA spring steels produced by two different metallurgical processes[J]. Iron and Steel, 2009, 44(2): 64-68. [4]Tian J, Wang W, Li H, et al. Understanding main factors controlling high cycle fatigue crack initiation and propagation of high strength maraging stainless steels with Ti addition[J]. Materials Science and Engineering A, 2021, 805: 140589. [5]Kubit A, Bucior M, Zielecki W, et al. The impact of heat treatment and shot peening on the fatigue strength of 51CrV4 steel[J]. Procedia Structural Integrity, 2016, 2: 3330-3336. [6]Farrahi G H, Lebrijn J L, Couratin D. Effect of shot peening on residual stress and fatigue life of a spring steel[J]. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18(2): 211-220. [7]Ren C X, Wang D Q Q, Wang Q, et al. Enhanced bending fatigue resistance of a 50CrMnMoVNb spring steel with decarburized layer by surface spinning strengthening[J]. International Journal of Fatigue, 2019, 124: 277-287. [8]刘建睿, 严宏志, 李 算, 等. 离子渗氮工艺参数对4Cr5MoSiV钢表层组织与性能的影响[J]. 表面技术, 2019, 48(8): 199-205. Liu Jianrui, Yan Hongzhi, Li Suan, et al. Effect of ion nitriding process parameters on surface properties of 4Cr5MoSiV steel[J]. Surface Technology, 2019, 48(8): 199-205. [9]Hatamleh O, Lyons J, Forman R. Laser peening and shot peening effects on fatigue life and surface roughness of friction stir welded 7075-T7351 aluminum[J]. Fatigue and Fracture of Engineering Materials and Structures, 2010, 30(2): 115-130. [10]Xia B, Wang B, Zhang P, et al. Improving the high-cycle fatigue life of a high-strength spring steel for automobiles by suitable shot peening and heat treatment[J]. International Journal of Fatigue, 2022,161: 106891. [11]Scuracchio B G, Lima N B D, Schoen C G. Role of residual stresses induced by double peening on fatigue durability of automotive leaf springs[J]. Materials and Design, 2013, 47: 672-676. [12]Irizalp S G, Saklakoglu N, Baris F, et al. Effect of shot peening on residual stress distribution and microstructure evolution of artificially defected 50CrV4 steel[J]. Journal of Materials Engineering and Performance, 2020, 29(11): 7607-7616. [13]Wildeis A, Christ H J, Brandt R. Influence of residual stresses on the crack initiation and short crack propagation in a martensitic spring steel[J]. Metals, 2022, 12(7): 1085. [14]Fragoudakis R, Saigal A, Savaidis G, et al. Fatigue assessment and failure analysis of shot-peened leaf springs[J]. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36(2): 92-101. [15]Myung N J, Wang L, Choi N S. High-cycle and very high-cycle bending fatigue strength of shot peened spring steel[J]. Journal of Mechanical Science and Technology, 2021, 35(11): 4963-4973. [16]Higounenc O. Correlation of shot peening parameters to surface characteristic[C]//ICSP-9: Shot Peening. 2005: 28-35. [17]李 行, 张继旺, 易科尖, 等. 喷丸处理EA4T车轴钢疲劳性能和残余应力松弛行为研究[J]. 表面技术, 2019, 48(10): 244-250, 266. Li Xing, Zhang Jiwang, Yi Kejian, et al. Fatigue properties and residual stress relaxation behavior of shot peened EA4T axle steel[J]. Surface Technology, 2019, 48(10): 244-250, 266. [18]Inglis C E, Esq M A. Stresses in a plate due to the presence of cracks and sharp corners[C]//The Spring Meetings of the Fifty-fourth Session. Institution of Naval Architeets. 1913: 219-241. [19]Xiang Y, Liu Y. Mechanism modelling of shot peening effect on fatigue life prediction[J]. Fatigue and Fracture of Engineering Materials and Structures, 2010, 33(2): 116-125. [20]王仁智. 金属材料的喷丸强化原理及其强化机理综述[J]. 中国表面工程, 2012, 25(6): 1-9. Wang Renzhi. Overview on the shot peening principle and its strengthening mechanisms for metallic materials[J]. China Surface Engineering, 2012, 25(6): 1-9. [21]Kim J C, Cheong S K, Noguchi H. Residual stress relaxation and low- and high-cycle fatigue behavior of shot-peened medium-carbon steel[J]. International Journal of Fatigue, 2013, 56(11): 114-122. [22]Schijve J. Fatigue of Structures and Materials[M]. 2nd Edition. Netherlands: Springer, 2008. [23]Song P S, Wen C C. Crack closure and crack growth behaviour in shot peened fatigued specimen[J]. Engineering Fracture Mechanics, 1999, 63(3): 295-304. [24]Dalaei K, Karlsson B, Svensson L E. Stability of shot peening induced residual stresses and their influence on fatigue lifetime[J]. Materials Science and Engineering A, 2011, 528(3): 1008-1015. [25]Bagherifard S, Guagliano M. Fatigue behavior of a low-alloy steel with nanostructured surface obtained by severe shot peening[J]. Engineering Fracture Mechanics, 2012, 81: 56-68. [26]Goodman J. Mechanics Applied to Engineering[M]. London: Longmans Green, 1941. [27]Kuno T, Wakita M, Hasegawa T, et al. Effect of hardness and shot peening on torsional fatigue strength of high strength spring steel[J]. Transactions of Japan Society of Spring Engineers, 2010, 2010(55): 19-24. |