[1]董 娜, 徐永新, 杨 晓. 淬火温度对工程机械用低合金耐磨钢组织与力学性能的影响[J]. 热加工工艺, 2020, 49(22): 123-125. Dong Na, Xu Yongxin, Yang Xiao. Effect of quenching temperature on microstructure and mechanical properties of low alloy wear resistant steel for construction machinery[J]. Hot Working Technology, 2020, 49(22): 123-125. [2]黄 龙, 邓想涛, 王昭东. 回火温度对颗粒增强型低合金耐磨钢组织和性能的影响[J]. 金属热处理, 2022, 47(3): 1-6. Huang Long, Deng Xiangtao, Wang Zhaodong. Effect of tempering temperature on microstructure and properties of particle reinforced low-alloyed wear resistant steel[J]. Heat Treatment of Metals, 2022, 47(3): 1-6. [3]李 恒, 黄智泉, 张 翅, 等. 低合金高强耐磨钢焊接接头软化现象研究[J]. 热加工工艺, 2020, 49(17): 19-23. Li Heng, Huang Zhiquan, Zhang Chi, et al. Study on softening of welded joints of low alloy high strength wear-resistant steel[J]. Hot Working Technology, 2020, 49(17): 19-23. [4]Liang Liang, Yan Lixin, Li Guanghui, et al. Effect of heat treatment on microstructure and mechanical properties of low-alloy wear-resistant steel NM450[J]. Materials Research Express, 2021, 8(4): 045606. [5]蔺虹宾, 吴代建, 彭显平. 利用JMatPro软件对低合金耐磨钢热处理参数的计算[J]. 热加工工艺, 2015, 44(4): 76-78, 82. Lin Hongbin, Wu Daijian, Peng Xianping. Heat treatment parameters simulation of low alloy wear resistant steel based on JMatPro software[J]. Hot Working Technology, 2015, 44(4): 76-78, 82. [6]高 杨, 牛永吉, 田建军, 等. 耐低温冲击高强高韧合金的组织与性能[J]. 材料导报, 2020, 34(S1): 420-426. Gao Yang, Niu Yongji, Tian Jianjun, et al. Microstructure and property of high strength and toughness alloy with low-temperature impact resistance[J]. Materials Reports, 2020, 34(S1): 420-426. [7]成慧梅, 冯俊鹏, 窦文亚, 等. 回火温度对Q690D低碳贝氏体钢组织性能的影响[J]. 河北冶金, 2023(3): 21-24. Cheng Huimei, Feng Junpeng, Dou Wenya, et al. Effect of tempering temperature on microstructure properties of low carbon bainite steel Q690D[J]. Hebei Metallurgy, 2023(3): 21-24. [8]孟凡宇, 陈令浩. 低合金耐磨钢及其热处理工艺[J]. 中国金属通报, 2022(11): 79-81. [9]任利兵, 刘 英, 刘亦文, 等. 淬火温度对中碳低合金耐磨钢ZG35Cr2NiMoVTi冲击磨料磨损性能的影响[J]. 热加工工艺, 2017, 46(14): 247-250. Ren Libing, Liu Ying, Liu Yiwen, et al. Effect of quenching temperature on impact abrasive wear resistance of ZG35Cr2NiMoVTi medium carbon low alloy wear resistant steel[J]. Hot Working Technology, 2017, 46(14): 247-250. [10]黄胜银, 沈亚坤, 郑喜平. ZG28CrMn2VB钢的成分设计及热处理工艺研究[J]. 热加工工艺, 2018, 47(18): 166-168, 171. Huang Shengyin, Shen Yakun, Zheng Xiping. Study on heat treatment process and composition design of ZG28CrMn2VB steel[J]. Hot Working Technology, 2018, 47(18): 166-168, 171. [11]李 建, 贾 涓, 宋新莉, 等. 一步配分工艺对低合金耐磨钢组织性能的影响[J]. 材料导报, 2019, 33(18): 3113-3118. Li Jian, Jia Juan, Song Xinli, et al. Effect of one-step partitioning process on microstructure and properties of low alloy wear-resistant steel[J]. Materials Reports, 2019, 33(18): 3113-3118. [12]王 彬, 王浩祥, 汪 军, 等. Q-P工艺等温淬火温度对60Mn2SiCr钢组织和力学性能的影响[J]. 金属热处理, 2023, 48(5): 265-269. Wang Bin, Wang Haoxiang, Wang Jun, et al. Effect of isothermal quenching temperature in Q-P process on microstructure and mechanical properties of 60Mn2SiCr steel[J]. Heat Treatment of Metals, 2023, 48(5): 265-269. [13]孙 岩, 安治国, 宋 月. 高扩孔钢的连续冷却转变[J]. 金属热处理, 2021, 46(6): 209-212. Sun Yan, An Zhiguo, Song Yue. Continuous cooling transformation of a high grade reaming steel[J]. Heat Treatment of Metals, 2021, 46(6): 209-212. [14]王 珊, 刘敬平, 张冬梅. 低合金耐磨钢ZG34Mn2SiV的研制[J]. 金属热处理, 2016, 41(2): 32-34. Wang Shan, Liu Jingping, Zhang Dongmei. Development of low-alloy wear-resistant steel ZG34Mn2SiV[J]. Heat Treatment of Metals, 2016, 41(2): 32-34. |