金属热处理 ›› 2024, Vol. 49 ›› Issue (2): 244-251.DOI: 10.13251/j.issn.0254-6051.2024.02.039
祁清文, 卜恒勇, 黎芩
收稿日期:
2023-08-27
修回日期:
2023-12-21
出版日期:
2024-03-27
发布日期:
2024-03-27
通讯作者:
卜恒勇,副教授,博士,E-mail:buhengyong@kust.edu.cn
作者简介:
祁清文(1998—),男,硕士研究生,主要研究方向为有色及稀贵金属材料,E-mail:qiqingwenjiayou@163.com。
基金资助:
Qi Qingwen, Bu Hengyong, Li Qin
Received:
2023-08-27
Revised:
2023-12-21
Online:
2024-03-27
Published:
2024-03-27
摘要: 7000系铝合金因其密度低、强度高、加工性能好等特点被广泛应用于航空航天和交通运输等领域。作为高强度可热处理型铝合金,固溶和时效是铝合金热加工过程中的重要步骤,热处理引起的微观组织变化对合金性能有较大影响。综述了近年来7000系铝合金固溶时效过程中微观组织变化的研究现状,阐述了热处理的目的、热处理影响因素、微观组织的演变和典型析出相对铝合金性能的影响,最后对7000系铝合金微观组织相关研究方向进行了展望。
中图分类号:
祁清文, 卜恒勇, 黎芩. 7000系铝合金固溶时效过程中微观组织变化的研究进展[J]. 金属热处理, 2024, 49(2): 244-251.
Qi Qingwen, Bu Hengyong, Li Qin. Research progress on change of microstructure of 7000 series aluminum alloy during solution treatment and aging[J]. Heat Treatment of Metals, 2024, 49(2): 244-251.
[1]陈小明, 宋仁国, 李 杰. 7×××系铝合金的研究现状及发展趋势[J]. 材料导报, 2009(3): 67-70. Chen Xiaoming, Song Renguo, Li Jie. Current research status and development trends of 7××× series aluminum alloys[J]. Materials Review, 2009(3): 67-70. [2]Cao C, Zhang D, Wang X, et al. Effects of Cu addition on the precipitation hardening response and intergranular corrosion of Al-5.2Mg-2.0Zn(wt.%) alloy[J]. Materials Characterization, 2016, 122: 177-182. [3]Ramgopal T, Schmutz P, Frankel G S. Electrochemical behavior of thin film analogs of Mg(Zn, Cu, Al)2[J]. Journal of the Electrochemical Society, 2001, 148(9): 348-356. [4]杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005, 19(2): 76-80. Yang Shoujie, Dai Shenglong. A glimpse at the development and application of aluminum alloys in aviation industry[J]. Materials Review, 2005, 19(2): 76-80. [5]倪维源. 高速列车用7×××系高强铝合金焊接接头的疲劳行为研究[D]. 上海: 上海工程技术大学, 2015. [6]曹德闯. 7075铝合金车身结构件冷模具淬火热成形工艺成形性模拟研究[D]. 长春: 吉林大学, 2014. [7]Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science and Engineering A, 2000, 280: 102-107. [8]王建国, 王祝堂. 航空航天变形铝合金的进展(1)[J]. 轻合金加工技术, 2013, 41(8): 1-6. Wang Jianguo, Wang Zhutang. Advance on wrought aluminium alloys used for aeronautic and astronautic industry(1)[J]. Light Alloy Fabrication Technology, 2013, 41(8): 1-6. [9]邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29(9): 2115-2141. Deng Yunlai, Zhang Xinming. Development of aluminium and aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2115-2141. [10]陈志国, 杨文玲, 王诗勇, 等. 微合金化铝合金的研究进展[J]. 稀有金属材料与工程, 2010, 39(8): 1499-1504. Chen Zhiguo, Yang Wenlin, Wang Shiyong, et al. Research progress of microalloyed Al alloys[J]. Rare Metal Materials and Engineering, 2010, 39(8): 1499-1504. [11]杨金龙, 邓运来, 祁小红, 等. 过饱和7050铝合金固溶体中第二相粒子的析出动力学[J]. 中南大学学报(自然科学版), 2012, 43(7): 2528-2533. Yang Jinlong, Deng Yunlai, Qi Xiaohong, et al. Precipitation kinetics of second-phase particles in supersaturated solid solution of 7050 aluminum alloy[J]. Journal of Central South University (Science and Technology), 2012, 43(7): 2528-2533. [12]陆智伦, 潘清林, 陈 琴, 等. 固溶处理对含Ag的Al-Cu-Mg合金力学性能和组织的影响[J]. 航空材料学报, 2011, 31(6): 24-29. Lu Zhilun, Pan Qinglin, Chen Qin, et al. Effects of solution treatment on mechanical properties and microstructure of Al-Cu-Mg alloy with Ag addition[J]. Journal of Aeronautical Materials, 2011, 31(6): 24-29. [13]王洪斌, 孟凡磊, 赵红阳, 等. 固溶处理对铸轧7050铝合金显微组织与性能的影响[J]. 材料热处理学报, 2013, 34(11): 99-103. Wang Hongbin, Meng Fanlei, Zhao Hongyang, et al. Effects of solid solution treatment on microstructure and properties of cast-rolled 7050 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(11): 99-103. [14]戴晓元, 夏长清, 刘昌斌, 等. 固溶处理及时效对7×××铝合金组织与性能的影响[J]. 材料热处理学报, 2007, 28(4): 59-63. Dai Xiaoyuan, Xia Changqing, Liu Changbin, et al. Effects of solution treatment and aging process on microstructure and mechanical properties of 7××× aluminium alloy[J]. Transactions of Materials and Heat Treatment, 2007, 28(4): 59-63. [15]李志辉, 熊柏青, 张永安, 等. 7B04 铝合金的时效沉淀析出及强化行为[J]. 中国有色金属学报, 2007, 17(2): 248-253. Li Zhihui, Xiong Baiqing, Zhang Yongan, et al. Ageing precipitation and strengthening behavior of 7B04 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(2): 248-253. [16]张 志, 陈忠家, 姚 奇, 等. 分级均匀化处理对7068新型高强铝合金组织及性能的影响[J]. 有色金属加工, 2014, 43(5): 13-17. Zhang Zhi, Chen Zhongjia, Yao Qi, et al. Effect of three-step homogenization on microstructure and mechanical properties of 7068 aluminum alloy[J]. Nonferrous Metals Processing, 2014, 43(5): 13-17. [17]李彩琼, 夏 琳, 王明刚, 等. 固溶工艺对 Al-Zn-Mg-Cu 合金组织与性能的影响[J]. 材料热处理学报, 2023, 44(11): 52-61. Li Caiqiong, Xia Lin, Wang Minggang, et al. Effect of solution process on microstructure and properties of Al-Zn-Mg-Cu alloy[J]. Transactions of Materials and Heat Treatment, 2023, 44(11): 52-61. [18]孙 宁, 王芝东, 王经涛, 等. 单级固溶对Al-Zn- Mg-Cu合金厚板组织及性能的影响[J]. 金属热处理, 2023, 48(11): 235-240. Sun Ning, Wang Zhidong, Wang Jingtao, et al. Effect of single-stage solution treatment on microstructure and properties of Al-Zn-Mg-Cu alloy thick plate[J]. Heat Treatment of Metals, 2023, 48(11): 235-240. [19]Song Fengxuan, Zhang Xinming, Liu Shengdan, et al. Exfoliation corrosion behavior of 7050-T6 aluminum alloy treated with various quench transfer time[J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 2258-2265. [20]张 勇, 邓运来, 张新明, 等. 7050铝合金热轧板的淬火敏感性[J]. 中国有色金属学报, 2008, 18(10): 1788-1794. Zhang Yong, Deng Yunlai, Zhang Xinming, et al. Quenching sensitivity of 7050 aluminium alloy hot-rolled plate[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(10): 1788-1794. [21]戴晓元, 熊超宇, 华熳煜. 固溶-时效对7×××系铝合金淬透性的影响[J]. 金属热处理, 2018, 43(7): 155-162. Dai Xiaoyuan, Xiong Chaoyu, Hua Manyu. Effect of solid solution and aging on hardenability of 7 series aluminum alloy[J]. Heat Treatment of Metals, 2018, 43(7): 155-162. [22]王学书, 聂 波, 谢延翠. 热处理制度对7075铝合金电导率的影响[J]. 轻合金加工技术, 2001, 29(7): 40-49. Wang Xueshu, Nie Bo, Xie Yancui. Effect of heat-treatment institutions on conductivity of 7075 aluminium alloy[J]. Light Alloy Fabrication Technology, 2001, 29(7): 40-49. [23]Qi Qingwen, Li Min, Duan Yonghua, et al. Effect of solution heat treatment on the microstructure and microhardness of 7050 aluminum alloy[J]. Metals, 2023, 18: 1-14. [24]陈 敏, 叶凌英, 孙大翔, 等. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3): 112-118. Chen Min, Ye Lingying, Sun Daxiang, et al. Effect of heating rate on grain structure and superplasticity of 7B04 aluminum alloy sheets[J]. Journal of Materials Engineering, 2017, 45(3): 112-118. [25]张 冲, 许晓静, 张 洁, 等. 固溶升温速率对Al-10.78Zn-2.78Mg-2.59Cu铝合金组织与性能的影响[J]. 机械工程材料, 2018, 42(8): 24-28. Zhang Chong, Xu Xiaojing, Zhang Jie, et al. Effect of heating rate for solid solution on microstructure and properties of Al-10.78Zn-2.78Mg-2.59Cu aluminum alloy[J]. Materials for Mechanical Engineering, 2018, 42(8): 24-28. [26]宁康琪, 彭北山, 盛志敬, 等. 高强铝合金的强化机制[J]. 邵阳学院学报(自然科学版), 2012, 9(4): 46-50. Ning Kangqi, Peng Beishan, Sheng Zhijin, et al. Strengthening mechanism of high strength aluminum alloy[J]. Journal of Shaoyang University (Natural Science Edition), 2012, 9(4): 46-50. [27]宁爱林. 析出相及其分布对高强铝合金力学性能的影响[D]. 长沙: 中南大学, 2007. [28]Marioara C D, Lefebvre W, Andersen S J, et al. Atomic structure of hardening precipitates in an Al-Mg-Zn-Cu alloy determined by HAADF-STEM and first-principles calculations: Relation to η-MgZn2[J]. Journal of Materials Science, 2013, 48: 3638-3651. [29]Berg L K, Gjønnes J, Hansen V, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging[J]. Acta Materialia, 2001, 49: 3443-3451. [30]Lervik A, Marioara C D, Kadanik M, et al. Precipitation in an extruded AA7003 aluminium alloy: Observations of 6×××-type hardening phases[J]. Materials and Design, 2020, 186: 108204. [31]Fan X G, Jiang D M, Meng Q C, et al. Characterization of precipitation microstructure and properties of 7150aluminium alloy[J]. Materials Science and Engineering A, 2006, 427: 130-135. [32]Sha G, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050)[J]. Acta Materialia, 2004, 52: 4503-4516. [33]Li X Z, Hansen V, Gjønnes J, et al. HRTEM study and structure modeling of the η′ phase, the harding precipitations in commercial Al-Zn-Mg alloys[J]. Acta Materialia, 1999, 47: 2651-2659. [34]万彩云, 陈江华, 杨修波, 等. 7×××系AlZnMgCu铝合金早中期时效强化析出相的研究[J]. 电子显微学报, 2010, 29(5): 455-460. Wan Caiyun, Chen Jianghua, Yang Xiubo, et al. Study of the early and mid-stage hardening precipitates in a 7××× AlZnMgCu aluminium alloy[J]. Journal of Chinese Electron Microscopy Society, 2010, 29(5): 455-460. [35]陈军洲. AA7055铝合金的时效析出行为与力学性能[D]. 哈尔滨: 哈尔滨工业大学, 2008. [36]Komura Y, Tokunaga K. Structural studies of stacking variants in Mg-base Friauf-Laves phases[J]. Acta Crystallographica, 1980, 36: 1548-1554. [37]Hansen V, Karlsen O B, Langsrud Y, et al. Precipitates zones and transitions during aging of Al-Zn-Mg-Zr 7000 series alloy[J]. Materials Science and Technology, 2004, 20: 185-193. [38]Stiller K, Warren P J, Hansen V, et al. Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100 ℃ and 150 ℃[J]. Materials Science and Engineering A, 1999, 270: 55-63. [39]Gladman T. Precipitation hardening in metals[J]. Materials Science and Technology, 1999, 15: 30-36. [40]Bendo A, Matsuda K, Nishimura K, et al. The possible transition mechanism for the meta-stable phase in the 7××× aluminium[J]. Materials Science and Technology, 2020, 36: 1621-1627. [41]Garrett G G, Knott J F. The influence of compositional and microstructural variations on the mechanism of static fracture in aluminum alloys[J]. Metallurgical Transactions A, 1978, 9: 1187-1201. [42]Liu G, Sun J, Nan C W, et al. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys[J]. Acta Materialia, 2005, 53: 3459-3468. [43]刘 刚, 张 鹏, 杨 冲, 等. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498. Liu Gang, Zhang Peng, Yang Chong, et al. Aluminum alloys: Solute atom clusters and their strengthening[J]. Acta Metallurgica Sinica, 2021, 57(11): 1484-1498. [44]Liu D M, Xiong B Q, Bian F G, et al. Quantitative study of nanoscale precipitates in an Al-Zn-Mg-Cu alloy aged with various typical tempers[J]. Materials Science and Engineering A, 2015, 588: 1-6. [45]Sha G, Cerezo A. Characterization of precipitates in an aged 7××× series Al alloy[J]. Surface and Interface Analysis, 2004, 36: 564-568. [46]Maloney S K, Hono K, Polmear I J, et al. The chemistry of precipitates in an aged Al-2.1Zn-1.7Mg at.% alloy[J]. Scripta Materialia, 1999, 41: 1031-1038. [47]李 超, 张新明, 刘文军, 等. 锌镁比对7085铝合金时效组织演变的影响[J]. 热加工工艺, 2013, 42(4): 215-222. Li Chao, Zhang Xinming, Liu Wenjun, et al. Effect of Zn/Mg ratio on microstructure evolution of aluminum alloy 7085 during aging[J]. Hot Working Technology, 2013, 42(4): 215-222. [48]Fang X, Song M, Kai L, et al. Effects of Cu and Al on the crystal structure and composition of η(MgZn2) phase in over-aged Al-Zn-Mg-Cu alloys[J]. Journal of Materials Science, 2012, 47: 5419-5427. [49]夏涵羿. 非等温时效热处理对7050铝合金性能的影响研究[D]. 南昌: 南昌大学, 2023. [50]付多辉. 7055铝合金非等温时效析出行为及其对性能的影响[D]. 合肥: 合肥工业大学, 2022. [51]唐 鹏, 黄嘉良, 刘倩男, 等. 时效时间对7075-T6铝合金组织与性能的影响[J]. 金属热处理, 2023, 48(7): 131-137. Tang Peng, Huang Jialiang, Liu Qiannan, et al. Effect of aging time on microstructure and properties of 7075-T6 aluminum alloy[J]. Heat Treatment of Metals, 2023, 48(7): 131-137. [52]肖 璐, 蒲博闻, 宋跃文, 等. ZL702A铝合金双硬度峰值时效行为与微观组织分析[J/OL]. 热加工工艺. https: //doi. org/10. 14158/j. cnki. 1001-3814. 20223438. Xiao Lu, Pu Bowen, Song Yuewen, et al. Analysis of double-hardness-peak aging behaviors and microstructure of ZL702A aluminum alloy[J/OL]. Hot Working Technology. https: //doi. org/10.14158/j.cnki.1001-3814. 20223438. [53]Sadeghi-Nezhad D, MousaviAnijdan S H, Lee H, et al. The effect of cold rolling, double aging and overaging processes on the tensile property and precipitation of AA2024 alloy[J]. Journal of Materials Research and Technology, 2020, 9(6): 15475-15485. [54]Ren J, Wang R C, Peng C Q, et al. Multistage aging treatment influenced precipitate characteristics improve mechanical and corrosion properties in powder hot-extruded 7055 Al alloy[J]. Materials Characterization, 2020, 170: 110683. [55]宋仁国. 高强度铝合金的研究现状及发展趋势[J]. 材料导报, 2000(1): 20-34. Song Renguo. Current status and trends in high strength aluminum alloy research[J]. Materials Review, 2000(1): 20-34. [56]Wang Y C, Cao L F, Wu X D, et al. Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085[J]. Journal of Alloys and Compounds, 2020, 814: 1-10. [57]Huo W T, Hu J J, Cao H H, et al. Simultaneously enhanced mechanical strength and inter-granular corrosion resistance in high strength 7075 Al alloy[J]. Journal of Alloys and Compounds, 2019, 781: 680-688. [58]Sun X Y, Zhang B, Lin H Q, et al. Correlations between stress corrosion cracking susceptibility and grain boundary microstructures for an Al-Zn-Mg alloy[J]. Corrosion Science, 2013, 77: 103-112. [59]Liu L L, Pan Q L, Wang X D, et al. The effects of aging treatments on mechanical property and corrosion behavior of spray formed 7055 aluminium alloy[J]. Journal of Alloys and Compounds, 2018, 735: 261-276. [60]任 硕, 陈江华, 刘吉梓, 等. 7150铝合金时效时晶界析出行为的研究[J]. 电子显微学报, 2011, 30(4): 444-450. Ren Shuo, Chen Jianghua, Liu Jizi, et al. Study on the precipitation behaviors at grain boundaries in 7150 aluminum alloys upon thermal aging[J]. Journal of Chinese Electron Microscopy Society, 2011, 30(4): 444-450. [61]Liu S D, Chen B, Li C B, et al. Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy[J]. Corrosion Science, 2015, 91: 203-212. |
[1] | 张乐, 蒋宏利, 谢本昌, 王东梅, 岑耀东, 陈林. 珠光体钢轨钢连续冷却转变曲线测定及组织分析[J]. 金属热处理, 2024, 49(2): 66-70. |
[2] | 杨杰, 王德成, 李贤君, 巫小林, 侯俊卿, 杨涛, 张赛. Q&P工艺对38MnB5Nb超高强钢力学性能与微观组织的影响[J]. 金属热处理, 2024, 49(2): 77-83. |
[3] | 张伟, 陈子健, 蔺永诚. 热处理对热轧态4343/3003/4343铝合金复合板材微观组织的影响[J]. 金属热处理, 2024, 49(2): 113-119. |
[4] | 何承渝, 蔡晨, 谷宇, 李静媛. 不同冷轧压下率对因瓦合金组织与性能的影响[J]. 金属热处理, 2024, 49(2): 120-127. |
[5] | 刘阳, 亓海全, 秦翔智, 韩向楠, 李天然. 水热环境下Al-9.2Zn-2.4Mg-1.5Cu铝合金挤压板的固溶时效行为[J]. 金属热处理, 2024, 49(2): 166-171. |
[6] | 蔡小叶, 程宗辉, 董定平, 白兵, 谢隋杰. 热处理对L-PBF成形Ti-6Al-4V钛合金显微组织和力学性能的影响[J]. 金属热处理, 2024, 49(2): 183-189. |
[7] | 许可, 杨贵荣, 宋文明, 马颖. 稀土对复合涂层微观组织与耐蚀性影响研究进展[J]. 金属热处理, 2024, 49(2): 252-258. |
[8] | 王富雪, 李家辉, 王强, 王洪涛. 表面机械滚压处理对退火TWIP钢组织和力学性能的影响[J]. 金属热处理, 2024, 49(2): 274-280. |
[9] | 孙宁, 徐志远, 杨立民, 李星辉, 张浩, 李延成, 李涛. 不同装炉卷数6016铝合金板材组织性能对比[J]. 金属热处理, 2024, 49(1): 39-47. |
[10] | 邸抑非, 李佳, 李勇, 赵荣达, 相珺, 伍复发. 固溶时效处理对AlMg5Si2Mn铝合金组织与性能的影响[J]. 金属热处理, 2024, 49(1): 148-153. |
[11] | 肖昌乐, 吴红艳, 陈伟, 康吉昌, 陈雨楠, 刘鹏举, 王义仁, 王秀宾. 退火温度对8111铝箔微观组织和性能的影响[J]. 金属热处理, 2024, 49(1): 186-192. |
[12] | 张巧霞, 张博厚, 徐国进, 郝海英, 罗俊锋, 何金江. 热处理及轧制过程中NiPt5合金微观组织及磁性能演变[J]. 金属热处理, 2024, 49(1): 206-210. |
[13] | 石佩斐, 张辉. 淬火介质对7050铝合金热锻件组织和性能的影响[J]. 金属热处理, 2024, 49(1): 290-295. |
[14] | 袁志钟, 王梦飞, 张伯承, 段旭斌, 李表敏, 杨海峰, 罗锐, 程晓农. 冷作模具钢SKD11的热处理增韧技术[J]. 金属热处理, 2023, 48(9): 1-7. |
[15] | 王毅, 韩杰, 刘超, 邓玲蕊, 李辉, 许荣昌. DQ-T工艺对1000 MPa级高强钢组织和性能的影响[J]. 金属热处理, 2023, 48(9): 30-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn