[1]毛新平, 武会宾, 汤启波. 我国桥梁结构钢的发展与创新[J]. 现代交通与冶金材料, 2021, 1(6): 1-5. Mao Xinping, Wu Huibin, Tang Qibo. The development and innovation of bridge structural steel in China[J]. Modern Transportation and Metallurgical Materials, 2021, 1(6): 1-5. [2]左照坤, 鞠晓晨, 赵欣欣, 等. 基于宽板拉伸试验的Q690qE高性能桥梁钢断裂韧性研究[J]. 桥梁建设, 2022, 52(1): 56-63. Zuo Zhaokun, Ju Xiaochen, Zhao Xinxin, et al. Research on fracture toughness of Q690qE high performance bridge steel based on wide plate tensile test[J]. Bridge Construction, 2022, 52(1): 56-63. [3]易伦雄, 袁 毅, 彭 最. 690 MPa级高性能桥梁钢工程应用[J]. 桥梁建设, 2021, 51(5): 14-19. Yi Lunxiong, Yuan Yi, Peng Zui. Engineering application of 690 MPa high-performance bridge steel[J]. Bridge Construction, 2021, 51(5): 14-19. [4]Collins W, Sherman R, Leon R, et al. Fracture toughness characterization of high-performance steel for bridge girder applications[J]. Journal of Materials in Civil Engineering, 2019, 31(4): 1-10. [5]Miki C, Ichikawa A, Kusunoki T, et al. Proposal of new high performance steels for bridges (BHS500, BHS700)[J]. Doboku Gakkai Ronbunshu, 2003, 738: 1-10. [6]Tewary N K, Kundu A, Nandi R, et al. Microstructural characterization and corrosion performance of old railway girder bridge steel and modern weathering structural steel[J]. Corrosion Science, 2016, 113: 57-63. [7]Morozov Y D, Pemov I F, Matrosov M Y, et al. Steels for bridge structures[J]. Metallurgist, 2020, 63(12): 933-950. [8]Cano H, Diaz I, Fuente D D L, et al. Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities[J]. Materials and Corrosion, 2018, 69(1): 8-19. [9]Wang X M, Zhao A M, Liu S P, et al. The measurement of SH-CCT curve and analysis on microstructure and performance of heat-affected zone of Q690 high-strength bridge steel[J]. International Journal of Microstructure and Materials Properties, 2021, 15(5-6): 356-369. [10]Huang W H, Yen H W, Lee Y L. Corrosion behavior and surface analysis of 690 MPa-grade offshore steels in chloride media[J]. Journal of Materials Research and Technology, 2019, 8(1): 1476-1485. [11]彭宁琦, 付贵勤, 周文浩, 等. 高强韧耐候桥梁钢Q690qNH的防断选材及验收方法[J]. 钢铁, 2022, 57(3): 97-107. Peng Ningqi, Fu Guiqin, Zhou Wenhao, et al. Material selection and acceptance of fracture resistance for high strength and toughness weather-resistant bridge steel of Q690qNH[J]. Iron and Steel, 2022, 57(3): 97-107. [12]Karalar M, Dicleli M. Fatigue in jointless bridge H-piles under axial load and thermal movements[J]. Journal of Constructional Steel Research, 2018, 147: 504-522. [13]Sim J H, Kim T Y, Kim J Y, et al. On the strengthening effects affecting tensile and low cycle fatigue properties of low-alloyed seismic/fire-resistant structural steels[J]. Metals and Materials International, 2020, 28(2): 1-9. [14]陈建志. 贝氏体/马氏体复相EA4T钢微观组织与疲劳性能研究[D]. 沈阳: 东北大学, 2016. Chen Jianzhi. Microstructures and fatigue properties of bainite/martensite EA4T steels[D]. Shenyang: Northeastern University, 2016. [15]Kang J J, Zhang F C, Long X Y, et al. Low cycle fatigue behavior in a medium-carbon carbide-free bainitic steel[J]. Materials Science and Engineering A, 2016, 666: 88-93. [16]Dai X, Peng T, Chen Y F, et al. The correlation between martensite-austenite islands evolution and fatigue behavior of SA508-IV steel[J]. International Journal of Fatigue, 2020, 139(8): 1-9. [17]Zhou Q, Qian L, Meng J, et al. The fatigue properties, microstructural evolution and crack behaviors of low-carbon carbide-free bainitic steel during low-cycle fatigue[J]. Materials Science and Engineering A, 2021, 820: 1-12. [18]Zhang P, Zhu Q, Chen G, et al. Grain size based low fatigue life prediction model for nickel-based superalloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 5-10. [19]Ebara R. Grain size effect on low cycle fatigue behavior of high strength structural materials[J]. Solid State Phenomena, 2016, 258: 269-272. [20]Shams S A A, Kim G, Won J W, et al. Effect of grain size on the low-cycle fatigue behavior of carbon-containing high-entropy alloys[J]. Materials Science and Engineering A, 2021, 810: 1-14. [21]Pietro P M. Fatigue and Corrosion in Metals[M]. Italia: Springer, 2013. [22]Zonfrillo G. New correlations between monotonic and cyclic properties of metallic materials[J]. Journal of Materials Engineering and Performance, 2017, 26(4): 1569-1580. [23]Li C, Sun Q, Yang Y, et al. Theoretical estimation of fatigue crack initiation life for metallic materials[J]. Journal of Materials Engineering and Performance, 2013, 22(3): 655-663. [24]Coffin L F J. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transaction of the ASME, 1954, 76: 931-950. [25]Basan R, Franulovic M, Prebil I, et al. Study on Ramberg-Osgood and Chaboche models for 42CrMo4 steel and some approximations[J]. Journal of Constructional Steel Research, 2017, 136: 65-74. |