[1]Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects[J]. Materials Today, 2016, 19(6): 349-362. [2]Barron P J, Carruthers A W, Fellowes J W, et al. Towards V-based high-entropy alloys for nuclear fusion applications[J]. Scripta Materialia, 2020, 176: 12-16. [3]Nam H, Park S, Park N, et al. Weldability of cast CoCrFeMnNi high-entropy alloys using various filler metals for cryogenic applications[J]. Journal of Alloys and Compounds, 2020, 819: 83-88. [4]Miao Junwei, Liang Hui, Zhang Aijun, et al. Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces[J]. Tribology International, 2021, 153, 106599. [5]Cao Yuankui, Liu Yong, Li Yunping, et al. Precipitation behavior and mechanical properties of a hot-worked TiNbTa0.5ZrAl0.5 refractory high entropy alloy[J]. International Journal of Refractory Metals and Hard Materials, 2020, 1: 86-93. [6]Joseph Jithin, Haghdadi Nima, Shamlaye Karl, et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures[J]. Wear, 2019, 429: 32-44. [7]Li Wendong, Liaw Peter K, Gao Yanfei. Fracture resistance of high entropy alloys: A review[J]. Intermetallics, 2018, 99: 69-83. [8]Fu Yu, Li Jun, Luo Hong, et al. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J]. Journal of Materials Science and Technology, 2021, 80: 217-233. [9]Wei Shizhong, Zhu Jinhua, Xu Liujie, et al. Effects of carbon on microstructures and properties of high vanadium high-speed steel[J]. Materials and Design, 2006, 27(1): 58-63. [10]Kai W, Cheng F P, Liao C Y, et al. The oxidation behavior of the quinary FeCoNiCrSix high-entropy alloys[J]. Materials Chemistry and Physics, 2018, 210: 362-369. [11]Zhang Y, Zuo T T, Cheng Y Q, et al. High-entropy alloys with high saturation magnetization and electrical resistivity[J]. Scientific Reports, 2013, 3: 1-7. [12]Ba H B, Dong L M, Zhang Z Q, et al. Effects of trace Si addition on the microstructures and tensile properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy[J]. Metals, 2017, 7(8): 286. [13]Qin D, Lu Y, Liu Q, et al. Effects of Si addition on mechanical properties of Ti-5Al-5V-5Mo-3Cr alloy[J]. Materials Science and Engineering A, 2013, 561: 460-467. [14]Xin Benbin, Zhang Aijun, Han Jiesheng, et al. Improving mechanical properties and tribological performance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys via doping Si[J]. Journal of Alloys and Compounds, 2021, 869: 159122. [15]Thirathipviwat P, Onuki Y, Song G, et al. Evaluation of dislocation activities and accumulation in cold swaged CoCrFeMnNi high entropy alloy[J]. Journal of Alloys and Compounds, 2022, 890: 161816. [16]Kumar A, Swarnakar A K, Basu A, et al. Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSix high entropy alloys[J]. Journal of Alloys and Compounds, 2018, 748: 889-897. [17]Huang Lei, Wang Xuejie, Jia Fuchao, et al. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSix high entropy alloys[J]. Materials Letters, 2021, 282(1): 1-4. [18]Chang H Q, Zhang T W, Ma S G, et al. Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off[J]. Materials and Design, 2021, 197: 109202. [19]Su Yang, Tian Sugui, Yu Huichen, et al. Effect of pre-compressive treatment on creep behavior of a <011>-oriented single-crystal Ni-based superalloy[J]. Scripta Materialia, 2014, 93: 24-27. [20]胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010. [21]Guo Lin, Gu Ji, Gan Bin, et al. Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a selective laser melted FeCoCrNiMn-(N, Si) high entropy alloy[J]. Journal of Alloys and Compounds, 2021, 865: 158892. [22]杜文栋. 多主元合金的凝固组织和性能研究[D]. 镇江: 江苏科技大学, 2018. Du Wendong. Study on solidification microstructure and properties of multicomponent alloys[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018. [23]Guo Wenhui, Li Jingyuan, Qi Mingfan, et al. Effects of heat treatment on the microstructure, wear behavior and corrosion resistance of AlCoCrFeNiSi high-entropy alloy[J]. Intermetallics, 2021, 138: 107324. [24]李荣斌, 龙文宇, 张志玺, 等. 多组元AlxFeCrVTi0.25高熵合金微观组织与力学性能研究[J]. 热加工工艺, 2021, 50(14): 27-30. Li Rongbin, Long Wenyu, Zhang Zhixi, et al. Research on microstructure and mechanical properties of multicomponent AlxFeCrVTi0.25 high-entropy alloys[J]. Hot Working Technology, 2021, 50(14): 27-30. [25]Gopinath V M, Arulvel S. A review on the steels, alloys/high entropy alloys, composites and coatings used in high temperature wear applications[J]. Materials Today Proceedings, 2021, 43: 817-823. [26]Rahman Ur N, Rooij de M, Matthews D T A, et al. Wear characterization of multilayer laser cladded high speed steels[J]. Tribology International, 2019, 130: 52-62. [27]王振廷, 孟君晟. 摩擦磨损与耐磨材料[M]. 哈尔滨: 哈尔滨工业大学出版社, 2013. [28]Liu Yanfei, Liskiewicz Tomasz W, Beake Ben D. Dynamic changes of mechanical properties induced by friction in the Archard wear model[J]. Wear, 2019, 428/429: 366-375. [29]Lin Danyang, Xu Lianyong, Li Xiaojie, et al. A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting[J]. Additive Manufacturing, 2020, 35: 101340. [30]Seong Gyoon Kim, Yong Bum Park. Grain boundary segregation, solute drag and abnormal grain growth[J]. Acta Materialia, 2008, 56(15): 3739-3753. [31]He Junyang, Wang Qi, Zhang Husheng, et al. Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy[J]. Science Bulletin, 2018, 63(6): 362-368. [32]Mansoor A, Du W B, Yu Z J, et al. Effects of grain refinement and precipitate strengthening on mechanical properties of double-extruded Mg-12Gd-2Er-0.4Zr alloy[J]. Journal of Alloys and Compounds, 2022, 898: 162873. [33]Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J]. Scripta Materialia, 2013, 68(7): 526-529. [34]Seol Jae Bok, Bae Jae Wung, Li Zhiming, et al. Boron doped ultrastrong and ductile high-entropy alloys[J]. Acta Materialia, 2018, 151: 366-376. |