[1]王 杰, 党淑娥, 范子靖, 等. 17CrNiMo6齿轮钢的组织均匀化[J]. 金属热处理, 2022, 47(11): 126-133. Wang Jie, Dang Shue, Fan Zijing, et al. Microstructure homogenization of 17CrNiMo6 gear steel[J]. Heat Treatment of Metals, 2022, 47(11): 126-133. [2]乔晓阳, 裴小芳, 崔 冕, 等. 易切削齿轮钢22CrMoHS的开发[J]. 特殊钢, 2020, 41(3): 32-34. Qiao Xiaoyang, Pei Xiaofang, Cui Mian, et al. Development of free cutting 22CrMoHS gear steel[J]. Special Steel, 2020, 41(3): 32-34. [3]杨延辉,王毛球,陈敬超,等. 高温渗碳齿轮钢的研究进展[J]. 特殊钢, 2013, 34(1): 22-24. Yang Yanhui, Wang Maoqiu, Chen Jinchao, et al. Research progress in gear steels for high temperature carburization[J]. Special Steel, 2013, 34(1): 22-24. [4]卢金生, 杜树芳. 时效硬化渗氮齿轮钢及深层渗氮工艺[J]. 机械传动, 2022, 46(4): 165-170. Lu Jinsheng, Du Shufang. Age-hardening nitriding gear steel and deep case nitriding process[J]. Journal of Mechanical Transmission, 2022, 46(4): 165-170. [5]吴园园, 石丽丽, 张继明. 齿轮钢中渗氮层深度及含量的测定方法[J]. 冶金分析, 2022, 42(10): 38-42. Wu Yuanyuan, Shi Lili, Zhang Jiming. Determination method of depth and content of nitriding layer in gear steel[J]. Metallurgical Analysis, 2022, 42(10): 38-42. [6]范 斌, 刘 利, 张时雨, 等. 齿轮钢20CrMnTiH淬透性/宏观偏析控制[J]. 连铸, 2023(1): 47-54. Fan Bin, Liu Li, Zhang Shiyu, et al. Gear steel 20CrMnTiH hardenability/macro segregation control[J]. Continuous Casting, 2023(1): 47-54. [7]张 伟, 谌 康, 李慧超, 等. Nb对20CrMo齿轮钢渗碳层深度和硬度的影响[J]. 金属热处理, 2021, 46(10): 31-34. Zhang Wei, Shen Kang, Li Huichao, et al. Effect of Nb on carburizing depth and hardness of 20CrMo gear steel[J]. Heat Treatment of Metals, 2021, 46(10): 31-34. [8]马 莉,王毛球,董 瀚. 微合金化渗碳齿轮钢的研究进展[J]. 特殊钢, 2008, 29(4): 28-30. Ma Li, Wang Maoqiu, Dong Han. Research progress in microalloyed case-hardened steels for gear[J]. Special Steel, 2008, 29(4): 28-30. [9]Tang En, Yuan Qing, Zhang Rui, et al. On the grain coarsening behavior of 20CrMnTi gear steel during pseudo carburizing: A comparison of Nb-Ti-Mo versus Ti-Mo microalloyed steel[J]. Materials Characterization, 2023, 203: 113138. [10]王昊杰, 郝浩腾, 王昭东, 等. 渗碳工艺参数对常见渗碳钢晶粒粗化行为的影响[J]. 材料热处理学报, 2017, 38(3): 177-185. Wang Haojie, Hao Haoteng, Wang Zhaodong, et al. Effect of carburizing process parameters on austenitic grain coarsening behavior of common carburizing steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(3): 177-185. [11]柳洋波, 崔京玉, 佟 倩, 等. 铌对20CrMnTi钢渗碳过程中晶粒粗化行为的影响[J]. 材料热处理学报, 2015, 36(1): 124-131. Liu Yangbo, Cui Jingyu, Tong Qian, et al. Effect of niobium on grain coarsening behavior of 20CrMnTi steel during carburizing[J]. Transactions of Materials and Heat Treatment, 2015, 36(1): 124-131. [12]陶思伟, 张 鑫. 20CrMnTi钢有无稀土渗碳热处理表面强化层的组织及性能研究[J]. 中国金属通报, 2021, 1: 211-212. [13]陈思联,耿 克. 热处理对Cr-Ni-Mo系渗碳齿轮钢机械性能的影响[J]. 特殊钢, 2002, 23(2): 20-22. Chen Silian, Geng Ke. Effect of heat treatment on mechanical properties of Cr-Ni-Mo carburized gear steel[J]. Special Steel, 2002, 23(2): 20-22. [14]陈振宇, 胡传顺, 秦 华, 等. 加热温度对2.25Cr-1Mo-0.25V钢晶粒度的影响[J]. 热加工工艺, 2013, 42(4): 23-25. Chen Zhenyu, Hu Chuanshun, Qin Hua, et al. Effect of heating temperature on grain size of 2.25Cr-1Mo-0.25V steel[J]. Hot Working Technology, 2013, 42(4): 23-25. [15]雍 兮, 曹存根, 张利平, 等. 20CrMnTi钢钛、氮含量的计算机优化设计及其应用[J]. 机械工程材料, 2010, 34(12): 80-83. Yong Xi, Cao Cungen, Zhang Liping, et al. Computer optimal design of titanium and nitrogen content in 20CrMnTi steel and its application[J]. Materials for Mechanical Engineering, 2010, 34(12): 80-83. [16]Li Zhongbo, Yuan Qing, Xu Shaopu, et al. In situ observation of the grain growth behavior and martensitic transformation of supercooled austenite in NM500 wear-resistant steel at different quenching temperatures[J]. Materials, 2023, 16: 3840. |