[1]刘 正, 张 奎, 曾小勤. 镁基轻质合金理论基础及其应用[M]. 北京: 机械工业出版社, 2002. [2]Luo A A. Essential Readings in Magnesium Technology[M]. Manhattan: John Wiley and Sons, Ltd, 2014. [3]陈 凌, 张贤明, 刘 飞, 等. 镁合金疲劳研究现状及展望[J]. 重庆工商大学学报(自然科学版), 2017, 34(1): 75-79. Chen Lin, Zhang Xianming, Liu Fei, et al. Present situation and development of research on fatigue of magnesium alloys[J]. Journal of Chongqing Technology and Business(Natural Sciences Edition), 2017, 34(1): 75-79. [4]戚方舟, 张小龙, 吴国华, 等. 镁稀土合金疲劳性能的研究进展[J]. 特种铸造及有色合金, 2021, 41(5): 629-637. Qi Fangzhou, Zhang Xiaolong, Wu Guohua, et al. Research progress in fatigue properties of Mg-RE alloys[J]. Special Casting and Nonferrous Alloys, 2021, 41(5): 629-637. [5]安如爽, 苏 鑫, 冯志军, 等. 铸造镁合金疲劳研究现状[J]. 特种铸造及有色合金, 2021, 41(2): 251-257. An Rushuang, Su Xin, Feng Zhijun, et al. Research progress in fatigue behavior of cast magnesium alloy[J]. Special Casting and Nonferrous Alloys, 2021, 41(2): 251-257. [6]Tan L, Huang X, Wang Y, et al. Activation Behavior of {1012}-{1012} secondary twins by different strain variables and different loading directions during fatigue deformation of AZ31 magnesium alloy[J]. Metals, 2022, 12(9): 1433. [7]Chen Shiqi, Zhao Wenxiang, Yan Pei, et al. Effect of milling surface topography and texture direction on fatigue behavior of ZK61M magnesium alloy[J]. International Journal of Fatigue, 2022, 156: 106669. [8]Shu Yang, Zhang Xiyan, Yu Jiangping, et al. Tensile behaviors of fatigued AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(5): 896-901. [9]Ishihara S, Kitagawa S, Qi M R, et al. Evaluation of distribution of fatigue lives of the extruded magnesium alloy AZ61[J]. Acta Mechanica, 2013, 224(6): 1251-1260. [10]Karparvarfard S M H, Shaha S K, Behravesh S B, et al. Fatigue characteristics and modeling of cast and cast-forged ZK60 magnesium alloy[J]. International Journal of Fatigue, 2018, 118: 282-297. [11]Duan G S, Wu B L, Du X H, et al. The cyclic frequency sensitivity of low cycle fatigue (LCF) behavior of the AZ31B magnesium alloy[J]. Materials Science and Engineering A, 2014, 60(3): 11-12. [12]Ghorbanpour S, Mcwilliams B A, Knezevic M. Low-cycle fatigue behavior of rolled WE43-T5 magnesium alloy[J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(6): 1357-1372. [13]武艳军. 变面轧制AZ31镁合金高周疲劳行为[J]. 轻金属, 2019(4): 46-49. Wu Yanjun. High-cycle fatigue behavior of variable-plane-rolled AZ31 magnesium alloy[J]. Light Metals, 2019(4): 46-49. [14]Adams J F, Allison J E, Jones J W. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium[J]. International Journal of Fatigue, 2016, 93: 372-386. [15]张 凯, 李兴刚, 李永军, 等. 热处理对ZM51镁合金力学性能的影响[J]. 稀有金属, 2019, 43(6): 585-591. Zhang Kai, Li Xinggang, Li Yongjun, et al. Properties of ZM51 magnesium alloys with heat treatments[J]. Chinese Journal of Rare Metals, 2019, 43(6): 585-591. [16]穆 桐, 石国梁, 张 奎, 等. T6态ZM51变形镁合金的高周疲劳行为[J]. 中国有色金属学报, 2020, 30(8): 1770-1780. Mu Tong, Shi Guoliang, Zhang Kui, et al. High cycle fatigue behavior of T6-treated ZM51 alloy extrusion[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(8): 1770-1780. [17]袁家伟. 高导热Mg-Zn-Mn合金及其性能研究[D]. 北京: 北京有色金属研究总院, 2013. [18]Zhang D F, Shi G L, Zhao X B, et al. Microstructure evolution and mechanical properties of Mg-x%Zn-1%Mn (x=4, 5, 6, 7, 8, 9) wrought magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 15-25. [19]Marth P E, Aaronson H I, Lorimer G W, et al. Application of heterogeneous nucleation theory to precipitate nucleation at GP zones[J]. Metallurgical and Materials Transactions A, 1976, 7(10): 1519-1528. [20]Yin S M, Yang F, Yang X M, et al. The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy[J]. Materials Science and Engineering A, 2008, 494(1/2): 397-400. [21]Yu J P, Zhang X Y, Shu Yang, et al. Evolution characteristics of microstructure and properties in AZ31 alloy during high cycle fatigue processes[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(7): 1530-1536. |