金属热处理 ›› 2024, Vol. 49 ›› Issue (7): 254-260.DOI: 10.13251/j.issn.0254-6051.2024.07.039

• 工艺研究 • 上一篇    下一篇

退火温度对超高强度无取向硅钢组织与性能的影响

姜世勇, 陈祥, 林媛, 张文康   

  1. 山西太钢不锈钢股份有限公司 技术中心, 山西 太原 030003
  • 收稿日期:2023-12-05 修回日期:2024-03-29 出版日期:2024-07-25 发布日期:2024-08-29
  • 作者简介:姜世勇(1977—),男,高级工程师,硕士,主要研究方向为大型水电用超高牌号无取向硅钢的研发,E-mail: jiangsy@tisco.com.cn

Effect of annealing temperature on microstructure and properties of ultra-high strength non-oriented silicon steel

Jiang Shiyong, Chen Xiang, Lin Yuan, Zhang Wenkang   

  1. State Key Laboratory of Advanced Special Steel, School of Materials and Science Engineering, Shanghai University, Shanghai 200072, China
  • Received:2023-12-05 Revised:2024-03-29 Online:2024-07-25 Published:2024-08-29

摘要: 研究了保温时间2 min、不同退火温度对3.52%Si-1.10%Al无取向硅钢再结晶组织、织构、力学性能及磁性能的影响。结果表明,试验钢的开始再结晶温度约为630 ℃,低于630 ℃退火时,退火板的显微组织与冷轧板非常相似,未发生明显变化。高于630 ℃退火时,退火板中开始出现再结晶,再结晶分数随退火温度升高而明显增加。再结晶晶粒的尺寸随退火温度升高而缓慢增大,但在500~790 ℃整个试验温度区间内,再结晶晶粒尺寸均未发生明显长大,远未达到最佳晶粒尺寸状态。冷轧板织构主要是α线织构和γ线织构,η织构强度较弱。随退火温度升高,α线织构强度明显降低,790 ℃时{001}<110>和{112}<110>织构已全部消失;γ线织构{111}<110>强度随退火温度升高先降低后又升高。{111}<112>织构变化规律与{111}<110>织构大体相同,大于690 ℃较高温度退火时,对磁性能有利的η织构{100}<001>和{110}<001>强度明显增加。随退火温度升高,产品铁损P1.5/50呈单调下降趋势,而磁极化强度J5000J10000呈单调上升趋势。随退火温度升高,屈服强度一直呈下降趋势,但在不同的温度区间内,下降的速率不同。在再结晶刚开始的610~630 ℃和再结晶比例迅速增加的670~690 ℃两个温度区间,下降速率出现两个峰值,其他温度区间下降速率变得较为缓和。在630~670 ℃区间退火,可生产出Rp0.2≥650 MPa而磁性能优良的超高强度无取向硅钢产品。

关键词: 超高强度, 无取向硅钢, 退火温度, 组织, 性能

Abstract: Effect of different annealing temperatures with holding time of 2 min on the recrystallization structure, texture, mechanical properties and magnetic properties of 3.52%Si-1.10%Al non-oriented silicon steel was studied. The results show that the initial recrystallization temperature of the experimental steel is about 630 ℃. When annealed below 630 ℃, the microstructure of the annealed sheet is very similar to that of the cold rolled sheet, without no significant difference. When annealed above 630 ℃, recrystallization begins to occur in the annealed sheet, and the recrystallization fraction increases significantly with the increase of annealing temperature. The size of recrystallized grains slowly increases with the increase of annealing temperature, but without significant growth within the entire experimental temperature range of 500-790 ℃, far from reaching the optimal grain size. The texture of cold rolled sheet is mainly composed of α-fibre texture and γ-fibre texture, while η deformation texture strength is weak. As the annealing temperature increases, the deformed α-fibre texture decreases significantly, and the {001}<110>and {112}<110>textures have completely disappeared at 790 ℃, while the γ-fibre texture {111}<110> decreases first and then increases with the increase of annealing temperature. The variation pattern of {111}<112> texture is generally the same as that of {111}<110> texture. The intensity of η texture {100}<001> and {110}<001> which are beneficial for magnetic properties increases significantly when annealed at temperature over 690 ℃. As the annealing temperature increases, the iron loss P1.5/50 of the product shows a monotonic decreasing trend, while the magnetic polarization intensities J5000 and J10000 show a monotonic increasing trend. As the annealing temperature increases, the yield strength shows a decreasing trend, but the rate of decrease varies within different temperature ranges. In the two temperature ranges of 610-630 ℃ at the beginning of recrystallization and 670-690 ℃ where the recrystallization ratio rapidly increases, there are two peaks in the decrease rate, while the decrease rate in other temperature ranges becomes more moderate. Annealing in the range of 630-670 ℃ can produce ultra-high strength non-oriented silicon steel products with Rp0.2≥650 MPa and excellent magnetic properties.

Key words: ultra-high strength, non-oriented silicon steel, annealing temperature, microstructure, properties

中图分类号: