金属热处理 ›› 2024, Vol. 49 ›› Issue (9): 24-30.DOI: 10.13251/j.issn.0254-6051.2024.09.004

• 组织与性能 • 上一篇    下一篇

热轧65Mn带钢等温相变行为及组织性能与扁卷的协同调控

田亚强1, 么志强1, 年保国2, 张俊粉3, 张晓磊3, 宋进英1, 张明山1, 陈连生1   

  1. 1.华北理工大学 现代冶金技术教育部重点实验室, 河北 唐山 063210;
    2.河钢材料技术研究院, 河北 石家庄 050023;
    3.承德钒钛新材料有限公司, 河北 承德 067102
  • 收稿日期:2024-03-06 修回日期:2024-07-02 出版日期:2024-09-25 发布日期:2024-10-29
  • 通讯作者: 张明山,讲师,博士,E-mail: zhangms@ncst.edu.cn
  • 作者简介:田亚强(1980—),男,教授,博士,主要研究方向为金属材料组织性能控制及强韧化,E-mail: tyqwylfive@163.com。
  • 基金资助:
    河北省中央引导地方科技发展资金项目(246Z1021G)

Isothermal phase transformation behavior and cooperative regulation of microstructure and properties and flat coil of hot rolling 65Mn steel strip

Tian Yaqiang1, Yao Zhiqiang1, Nian Baoguo2, Zhang Junfen3, Zhang Xiaolei3, Song Jinying1, Zhang Mingshan1, Chen Liansheng1   

  1. 1. Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan Hebei 063210, China;
    2. HBIS Material Technology Research Institute, Shijiazhuang Hebei 050023, China;
    3. Chengde Vanadium Titanium New Material Co., Ltd., Chengde Hebei 067102, China
  • Received:2024-03-06 Revised:2024-07-02 Online:2024-09-25 Published:2024-10-29

摘要: 利用淬火相变仪得到65Mn钢的等温转变曲线(TTT曲线),基于该曲线研究了不同卷取温度下钢的显微组织与力学性能的演变规律,并对扁卷产生的可能原因和调控方法进行了探讨。结果表明:获得65Mn钢典型显微组织即先共析铁素体和珠光体的温度为600~750 ℃。TTT曲线呈典型C字形,550 ℃为“鼻尖”温度,孕育期较短,仅有0.25 s。其中,在65Mn钢典型组织形成温度范围内,随着温度的升高,孕育期逐渐增大,并且先共析铁素体含量增多,珠光体含量降低。根据实际生产,选取的65Mn钢卷取温度为650~750 ℃,显微组织均为先共析铁素体和珠光体。随着卷取温度由750 ℃降低至650 ℃,先共析铁素体含量由19.4%减少到4.1%,分布状态逐渐由块状分布过渡到网状分布,珠光体片层间距由277.0 nm减少到178.0 nm,使65Mn钢的屈服强度由534 MPa提高到637 MPa,抗拉强度由776 MPa提高到899 MPa,硬度由18.8 HRC提高到24.3 HRC,断裂总延伸率由28.9%降低到19.4%。在实际生产中,基于TTT曲线和不同卷取温度下组织与性能的演变规律调整卷取温度与卸卷前的停留时间,可以实现组织性能与扁卷缺陷的协同调控。

关键词: 65Mn钢, TTT曲线, 卷取工艺, 组织性能, 扁卷

Abstract: Isothermal transformation curve (TTT curve) of 65Mn steel was obtained by quenching phase change machine. Based on this curve, the evolution of microstructure and mechanical properties at different coiling temperatures was studied, and the possible causes and control methods of flat coil were discussed. The results show that the typical microstructure of the 65Mn steel, namely proeutectoid ferrite and pearlite, is obtained between 600-750 ℃. The TTT curve presents a typical "C" shape, with a "nose tip" temperature of 550 ℃. The incubation period is relatively short at this temperature, only 0.25 s. Within the typical microstructure formation temperature range of the 65Mn steel, the incubation period gradually increases with the increase of temperature, and the content of proeutectoid proeutectoid ferrite increases, while the content of pearlite decreases. According to the actual production, the selected coiling temperature of the 65Mn steel is between 650-750 ℃, and the microstructure is proeutectoid ferrite and pearlite. With the coiling temperature decreases from 750 ℃ to 650 ℃, the proeutectoid ferrite content decreases from 19.4% to 4.1%, and the distribution gradually transitions from block distribution to network distribution. The pearlite lamellar spacing decreases from 277.0 nm to 178.0 nm, resulting in an increase in the yield strength of the 65Mn steel from 534 MPa to 637 MPa, an increase in ultimate tensile strength from 776 MPa to 899 MPa, an increase in hardness from 18.8 HRC to 24.3 HRC, and a decrease in percentage total extension at fracture from 28.9% to 19.4%. In actual production, the coiling temperature and the holding time before coil discharging are adjusted based on TTT curve and the evolution of microstructure and mechanical properties under different coiling temperatures can achieve synergistic regulation of microstructure, mechanical properties and flat coil defects.

Key words: 65Mn steel, TTT curve, coiling process, microstructure and properties, flat coil

中图分类号: