金属热处理 ›› 2024, Vol. 49 ›› Issue (9): 96-102.DOI: 10.13251/j.issn.0254-6051.2024.09.016

• 工艺研究 • 上一篇    下一篇

时效处理对Mg-Y-Gd-Zn-Zr合金中LPSO相演变及性能的影响

任广笑1, 王超2,3, 曹喜娟1, 王凯2, 王红霞1,2, 程伟丽2, 牛晓峰2   

  1. 1.山西江淮重工有限责任公司 山西省轻金属及其复合材料研发及结构化应用中试基地, 山西 晋城 048000;
    2.太原理工大学 材料科学与工程学院 先进镁基材料山西省重点实验室, 山西 太原 030024;
    3.航空工业陕西宏远航空锻造有限公司, 陕西 西安 710000
  • 收稿日期:2024-05-12 修回日期:2024-08-09 出版日期:2024-09-25 发布日期:2024-10-29
  • 通讯作者: 王红霞,教授,博士,E-mail: wanghxia1217@163.com
  • 作者简介:任广笑(1990—),男,工程师,硕士,主要研究方向为轻合金液态成形,E-mail: 15034092049@163.com。
  • 基金资助:
    山西省科技成果转化引导专项(202204021301009, 202104021301022);山西省自然科学基金(20210302123135);中央引导地方科技发展资金(YDZJSX20231B003)

Evolution of LPSO phase and properties of Mg-Y-Gd-Zn-Zr alloy at different aging temperatures

Ren Guangxiao1, Wang Chao2,3, Cao Xijuan1, Wang Kai2, Wang Hongxia1,2, Cheng Weili2, Niu Xiaofeng2   

  1. 1. Shanxi Province Pilot Base for Research and Development of Light Metals and Their Composite Materials and Structured Applications, Shanxi Jianghuai Heavy Industry Co., Ltd., Jincheng Shanxi 048000, China;
    2. Shanxi Key Laboratory of Advanced Magnesium-Based Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, China;
    3. Avic Shaanxi Hongyuan Aviation Forging Company Ltd., Xi'an Shaanxi 710000, China
  • Received:2024-05-12 Revised:2024-08-09 Online:2024-09-25 Published:2024-10-29

摘要: 利用OM、SEM、XRD、TEM及性能测试等方法研究了铸态、固溶时效态Mg-6Y-3Gd-3Zn-0.5Zr合金微观组织演变及其对力学性能的影响。结果表明,铸态合金由树枝状α-Mg基体、晶界处连续网状18R-LPSO和Mg24(Gd, Y, Zn)5混合相组成。固溶处理后大部分Mg24(Gd, Y, Zn)5相与少部分18R-LPSO相回溶到基体内。250 ℃和300 ℃时效处理后,合金基体内析出了大量层片状14H-LPSO、Mg3(Y, Gd)及Mg5(Y, Gd)相。400 ℃时效处理后,晶内只析出了14H-LPSO相。铸态合金的抗拉强度和伸长率分别为222.7 MPa和4.1%。时效处理后合金强度均有所下降,伸长率略微上升。400 ℃峰时效合金由于晶内析出的14H-LPSO数量多、尺寸大,抗拉强度下降最多,相比铸态下降了39 MPa。

关键词: Mg-Y-Gd-Zn-Zr合金, LPSO相, 热处理, 力学性能

Abstract: The microstructural evolution of the Mg-6Y-3Gd-3Zn-0.5Zr alloys in the as-cast, solid solution and aging states and its influence on the mechanical properties were investigated by using OM, SEM, XRD, TEM and property testing methods. The results show that the as-cast alloy consists of dendritic α-Mg matrix with a continuous network of 18R-LPSO and Mg24(Gd, Y, Zn)5 mixed phases at the grain boundaries. After solid solution treatment, the most of Mg24(Gd, Y, Zn)5 phase and part of the 18R-LPSO phase are dissolved back into the matrix. A large amount of lamellar 14H-LPSO and Mg3(Y, Gd) and Mg5(Y, Gd) phases are precipitated in the matrix after aging at 250 ℃ and 300 ℃. Only 14H-LPSO phase is precipitated in the crystals after aging at 400 ℃. The tensile strength and elongation of the as-cast alloy are 222.7 MPa and 4.1%, respectively. The strength of the alloy decreases and the elongation increases slightly after aging. The alloy peak aged at 400 ℃ shows the greatest decrease in strength due to the large number and size of 14H-LPSO precipitated in the crystals, and the tensile strength decreases by 39 MPa compared with that of the as-cast state.

Key words: Mg-Y-Gd-Zn-Zr alloy, LPSO phase, heat treatment, mechanical properties

中图分类号: