[1]张靖宇. Cr-Mn-Si低合金钢热加工过程中的组织演变研究[D]. 重庆: 重庆大学, 2022. [2]谢元林. 我国特殊钢行业的现状及发展趋势[J]. 特钢技术, 2016, 22(1): 1-6. Xie Yuanlin. Current status and development trend of special steel industry in China[J]. Special Steel Technology, 2016, 22(1): 1-6. [3]万攸如, 许昌涂. 高强度及超高强度钢[M]. 北京: 机械工业出版社, 1988: 35-38. [4]罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512. Luo Haiwen, Shen Guohui. Progress and perspective of ultra-high strength steels having high toughness[J]. Acta Metallurgica Sinica, 2020, 56(4): 494-512. [5]冀宣名, 王礼榕, 杨 明, 等. 淬火-配分处理对30CrMnSiA钢冲击韧性的影响[J]. 材料科学与工艺, 2024, 24(2): 1-12. Ji Xuanming, Wang Lirong, Yang Ming, et al. Effect of quenching and partitioning on the impact toughness of 30CrMnSiA steel[J]. Materials Science and Technology, 2024, 24(2): 1-12. [6]张显武, 丁雅莉, 杨卓越, 等. 35CrMnSi低合金钢淬火直径与微观组织的关系[J]. 金属热处理, 2022, 47(11): 165-167. Zhang Xianwu, Ding Yali, Yang Zhuoyue, et al. Relationship between quenching diameter and microstructure of 35CrMnSi low alloy steel[J]. Heat Treatment of Metals, 2023, 48(11): 165-167. [7]张显武, 丁雅莉, 杨卓越, 等. 改善中碳Cr-Mn-Si钢淬透性的合金化研究[J]. 金属热处理, 2023, 48(1): 112-115. Zhang Xianwu, Ding Yali, Yang Zhuoyue, et al. Investigation on alloying to improve hardenability of medium carbon Cr-Mn-Si steel[J]. Heat Treatment of Metals, 2023, 48(1): 112-115. [8]张显武. 35CrMnSiA钢淬透性优化研究[D]. 昆明: 昆明理工大学, 2022. [9]沈俊昶, 杨才福, 张永权. 两相区淬火对5NiCrMo钢组织与性能的影响[J]. 钢铁, 2007, 34(6): 63-68. Shen Junchang, Yang Caifu, Zhang Yongquan. Effect of intercritical treatment on structure and properties of 5NiCrMo steel[J]. Iron and Steel, 2007, 34(6): 63-68. [10]张 宽, 镇 凡, 曲锦波. 两相区淬火工艺对超高强度钢组织与性能的影响[J]. 金属热处理, 2016, 41(10): 147-152. Zhang Kuan, Zhen Fan, Qu Jinbo. Effect of intercritical quenching process on microstructure and properties of ultra-high strength steel[J]. Heat Treatment of Metals, 2016, 41(10): 147-152. [11]郭天阳, 罗小兵, 项重辰, 等. 两相区淬火温度对Ni-Cr-Mo-V系高强船体钢组织及性能的影响[J]. 材料科学与工艺, 2024, 24(2): 1-9. Guo Tianyang, Luo Xiaobing, Xiang Zhongchen, et al. Effect of intercritical quenching temperature on microstructure and properties of Ni-Cr-Mo-V high strength hull steel[J]. Materials Science and Technology, 2024, 24(2): 1-9. [12]俄 馨, 李 岗, 史 伟, 等. 热处理工艺对16Mn钢锻件显微组织和力学性能的影响[J]. 理化检验-物理分册, 2022, 58(3): 6-9. E Xi, Li Gang, Shi Wei, et al. Influence of heat treatment process on microstructure and mechanical properties of 16Mn steel forging[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2022, 58(3): 6-9. [13]刁 羽, 沈明钢, 孙浩源. 淬火温度对低合金超高强度工程机械用钢组织和性能的影响[J]. 热加工工艺, 2013, 42(18): 184-186. Diao Yu, Shen Minggang, Sun Haoyuan. Effect of quenching temperature on microstructure and properties of ultra high strength steel for engineering mechanism[J]. Hot Working Technology, 2013, 42(18): 184-186. [14]赵海凤, 于毫勇, 谭振宇. 淬火温度对ø16 mm 35Si2Cr钢棒力学性能的影响[J]. 金属热处理, 2023, 48(12): 144-147. Zhao Haifeng, Yu Haoyong, Tan Zhenyu. Effect of quenching temperature on mechanical properties of ø16 mm 35Si2Cr steel bar[J]. Heat Treatment of Metals, 2023, 48(12): 144-147. [15]张 戟, 李 飞. 淬火工艺对34CrMo4钢组织和性能的影响[J]. 金属材料与冶金工程, 2020, 48(5): 41-47. Zhang Ji, Li Fei. Influence of quenching process on microstructure and mechanical properties of 34CrMo4 steel[J]. Metal Materials and Metallurgy Engineering, 2020, 48(5): 41-47. [16]廖庚峰, 李 丰, 胡立嵩, 等. 4340钢与40CrNiMo钢的热处理特点[J]. 热处理技术与装备, 2023, 44(5): 5-9. Liao Gengfeng, Li Feng, Hu Lisong, et al. Heat treatment characteristics of 4340 steel and 40CrNiMo steel[J]. Heat Treatment Technology and Equipment, 2023, 44(5): 5-9. [17]张钟涛, 赵 刚, 肖 欢, 等. 淬火温度和配分温度对CSP生产的Q&P980钢组织及性能的影响[J]. 热加工工艺, 2024, 53(14): 93-98. Zhang Zhongtao, Zhao Gang, Xiao Huan, et al. Effects of quenching temperature and partitioning temperature on microstructure and properties of Q&P980 steel produced by CSP process[J]. Hot Working Technology, 2024, 53(14): 93-98. [18]邢嘉倪, 蔡 欣, 郑雷刚, 等. 淬火及回火温度对新型中碳合金钢42CrMo4M组织性能的影响[J]. 材料热处理学报, 2022, 43(5): 124-133. Xing Jiani, Cai Xin, Zheng Leigang, et al. Effect of quenching and tempering temperature on microstructure and mechanical properties of a new medium carbon alloy steel 42CrMo4M[J]. Transactions of Materials and Heat Treatment, 2022, 43(5): 124-133. |