[1]Zhang C, Ishii T, Hino Y, et al. The numerical and experimental study of non-premixed combustion flames in regenerative furnaces[J]. Journal of Heat Transfer, 2000, 122(2): 287-293. [2]Huang M J, Hsieh C T, Lee S T, et al. A coupled numerical study of slab temperature and gas temperature in the walking-beam-type slab reheating furnace[J]. Numerical Heat Transfer, 2008, 54(6): 625-646. [3]Mayr B, Prieler R, Demuth M, et al. CFD analysis of a pusher type reheating furnace and the billet heating characteristic[J]. Applied Thermal Engineering, 2017, 115: 986-994. [4]Alex M García, Andrés A Amell. A numerical analysis of the effect of heat recovery burners on the heat transfer and billet heating characteristics in a walking-beam type reheating furnace[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1208-1222. [5]García A M, Colorado A F, Obando J E, et al. Effect of the burner position on an austenitizing process in a walking-beam type reheating furnace[J]. Applied Thermal Engineering, 2019, 153: 633-645. [6]Han S H, Chang D, Kim C Y. A numerical analysis of slab heating characteristics in a walking beam type reheating furnace[J]. International Journal of Heat and Mass Transfer, 2010, 53(20): 3855-3861. [7]Wang J, Liu Y, Sunden B, et al. Analysis of slab heating characteristics in a reheating furnace[ J]. Energy Conversion and Management, 2017, 149: 928-936. [8]Prieler R, Mayr B, Demuth M, et al. Prediction of the heating characteristic of billets in a walking hearth type reheating furnace using CFD[J]. International Journal of Heat and Mass Transfer, 2016, 92(1): 675-688. [9]Prieler R, Mayr B, Demuth M, et al. Numerical analysis of the transient heating of steel billets and the combustion process under air-fired and oxygen enriched conditions[J]. Applied Thermal Engineering, 2016, 103: 252-263. [10]Ding J H, Liu X L, Wen Z, et al. Numerical simulation of straight sleeve type self-regenerative radiant tube[J]. Industrial Furnace, 2009, 31: 1-4. [11]Irfan M A, Chapman W. Thermal stresses in radiant tubes due to axial, circumferential and radial temperature distributions[J]. Applied Thermal Engineering, 2009, 29(10): 1913-1920. [12]Irfan M, Chapman W. Thermal stresses in radiant tubes: A comparison between recuperative and regenerative systems[J]. Applied Thermal Engineering, 2010, 30(3): 196-200. [13]Vanitha M, Padmavathi P. Thermal analysis energy performance and parameter identification of a stainless steel annealing furnace using ANSYS[J]. International Journal of Management, Technology and Engineering, 2018, 8: 442-459. [14]Gao Q, Pang Y H, Sun Q, et al. Numerical analysis of the heat transfer of radiant tubes and the slab heating characteristics in an industrial heat treatment furnace with pulse combustion[J]. International Journal of Thermal Sciences, 2021, 161: 106757. [15]Arkhazloo N B, Bouissa Y, Bazdidi-Tehrani F, et al. Experimental and unsteady CFD analyses of the heating process of large size forgings in a gas-fired furnace[J]. Case Studies in Thermal Engineering, 2019, 14: 100428. [16]Shih T H, Liou W W, Shabbir A, et al. A new κ-ε eddy viscosity model for high Reynolds number turbulent flows: Model development and validation[J]. Computers and Fluids, 1995, 24(3): 227-238. [17]Magnussen B F, Hjertager B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion[J]. Symposium(International) on Combustion, 1977, 16(1): 719-729. [18]Spalding D B. Mixing and chemical reaction in steady confined turbulent flames[J]. Symposium(International) on Combustion, 1971, 23(1): 649-657. [19]Magnussen B F. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow[C]// 19th AIAA, Aerospace Sciences Meeting. 1981. https://doi.org/10.2514/6.1981-42. [20]Magnussen B F, Hjertager B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion[J]. Symposium(international) on Combustion, 1977, 16(1): 719-729. [21]Chui E H, Raithby G D. Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method[J]. Numerical Heat Transfer Part B Fundamentals, 1993, 23(3): 269-288. [22]Raithby G D, Chui E H. A finite-volume method for predicting a radiant heat transfer in enclosures with participating media[J]. Journal of Heat Transfer, 1990, 112(2): 415-422. [23]Smith T F, Shen Z F, Friedman J N. Evaluation of coefficients for the weighted sum of gray gases model[J]. Journal of Heat Transfer, 1982, 104: 602-608. [24]Prieler R, Demuth M, Spoljaric D, et al. Numerical investigation of the steady flamelet approach under different combustion environments[J]. Fuel, 2015, 140: 731-743. [25]Mayr B, Prieler R, Demuth M, et al. Computational analysis of a semi-industrial furnace fired by a flat flame burner under different O2/N2 ratios using the steady laminar flamelet approach[J]. Journal of the Energy Institute, 2016, 90: 602-612. [26]Gerhardter H, Prieler R, Mayr B, et al. Assessment of a novel numerical model for combustion and in-flight heating of particles in an industrial furnace[J]. Journal of the Energy Institute, 2017, 91(6): 817-827. [27]Wang C S, Zhou Y, Liang Z J, et al. Heat transfer simulation and thermal efficiency analysis of new vertical heating furnace[J]. Case Studies in Thermal Engineering, 2019, 13: 100414. [28]Celik I B, Ghia U, Roache P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, 2008, 130(7): 078001. |