[1]韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522. Han Enhou, Wang Jianqiu. Effect of surface state on corrosion and stress corrosion for nuclear materials[J]. Acta Metallurgica Sinica, 2023, 59(4): 513-522. [2]乔 航, 王 力, 林根仙, 等. 聚丙烯酸对核电厂二回路管道材料流动加速腐蚀行为的影响[J]. 腐蚀与防护, 2022, 43(11): 49-53. Qiao Hang, Wang Li, Lin Genxian, et al. Effect of polyacrylic acid on flow accelerated corrosion behavior of pipe materials in secondary circuit of nuclear power plant[J]. Corrosion and Protection, 2022, 43(11): 49-53. [3]郭彦辉, 邓 冬, 张 跃, 等. 热处理工艺对核电主蒸汽超级管道管嘴力学性能的影响[J]. 金属热处理, 2023, 48(11): 156-160. Guo Yanhui, Deng Dong, Zhang Yue, et al. Effect of heat treatment process on mechanical properties of super pipe nozzle for nuclear power plant[J]. Heat Treatment of Metals, 2023, 48(11): 156-160. [4]宋少威, 尉文超, 时 捷, 等. 深冷处理对渗碳齿轮钢微观组织和硬度的影响[J]. 金属热处理, 2023, 48(11): 143-148. Song Shaowei, Yu Wenchao, Shi Jie, et al. Effect of cryogenic treatment on microstructure and hardness of carburized gear steel[J]. Heat Treatment of Metals, 2023, 48(11): 143-148. [5]张海东, 闫献国, 董 良, 等. 深冷处理对镐型截齿硬度、耐磨性和冲击性能的影响及其优化[J]. 金属热处理, 2022, 47(12): 84-89. Zhang Haidong, Yan Xianguo, Dong Liang, et al. Effect of cryogenic treatment on hardness, wear resistance and impact property of conical pick and its optimization[J]. Heat Treatment of Metals, 2022, 47(12): 84-89. [6]李慧东, 张覃轶, 刘 伟, 等. 深冷处理对440C马氏体不锈钢组织和耐蚀性的影响[J]. 金属热处理, 2022, 47(8): 152-157. Li Huidong, Zhang Qinyi, Liu Wei, et al. Effect of deep cryogenic treatment on microstructure and corrosion resistance of 440C martensitic stainless steel[J]. Heat Treatment of Metals, 2022, 47(8): 152-157. [7]胡文祥, 李建新, 史正良, 等. 深冷处理对合金铸铁组织及耐磨性能的影响[J]. 金属热处理, 2021, 46(7): 168-172. Hu Wenxiang, Li Jianxin, Shi Zhengliang, et al. Effect of cryogenic treatment on microstructure and wear resistance of alloy cast iron[J]. Heat Treatment of Metals, 2021, 46(7): 168-172. [8]何 潇, 李 俊, 李绍宏, 等. 深冷处理后回火温度对15Cr超级马氏体不锈钢组织及耐点蚀性能的影响[J]. 金属热处理, 2020, 45(11): 62-68. He Xiao, Li Jun, Li Shaohong, et al. Effects of tempering temperature after cryogenic treatment on microstructure and pitting resistance of 15Cr super martensite stainless steel[J]. Heat Treatment of Metals, 2020, 45(11): 62-68. [9]马治军, 刘 亿, 吴斌斌, 等. 深冷处理对Cr7V钢高温耐磨性与位错密度的影响[J]. 金属热处理, 2019, 44(1): 40-44. Ma Zhijun, Liu Yi, Wu Binbin, et al. Effect of cryogenic treatment on wear resistance at elevated temperature and dislocation density of tool steelCr7V[J]. Heat Treatment of Metals, 2019, 44(1): 40-44. [10]Singh G . A review on effect of heat treatment on the properties of mild steel[J]. Materials Today: Proceedings, 2021, 37: 2266-2268. [11]姬金金, 汪彦江, 俞丽丹, 等. 深冷处理过程中Inconel 617合金的微观组织演变[J]. 稀有金属材料与工程, 2023, 52(4): 1244-1250. Ji Jinjin, Wang Yanjiang, Yu Lidan, et al. Microstructure evolution of Inconel 617 alloy during subzero treatment[J]. Rare Metal Materials and Engineering, 2023, 52(4): 1244-1250. [12]何 琼, 李永刚, 朱艳强, 等. 深冷处理对X52管线钢耐磨性与耐腐蚀性的影响[J]. 表面技术, 2024, 53(8): 74-83. He Qiong, Li Yonggang, Zhu Yanqiang, et al. The effect of cryogenic treatment on the wear resistance and corrosion resistance of X52 pipeline steel[J]. Surface Technology, 2024, 53(8): 74-83. [13]马继一, 李花兵, 王海建, 等. 深冷处理对高氮M42高速钢组织与性能的影响[J]. 钢铁研究学报, 2023, 35(10): 1282-1290. Ma Jiyi, Li Huabing, Wang Haijian, et al. Effect of cryogenic treatment on microstructure and properties of high-nitrogen M42 high-speed steel[J]. Journal of Iron and Steel Research, 2023, 35(10): 1282-1290. [14]赵冬梅, 倪 磊, 蒋东旭, 等. 深冷处理对DC53冷作模具钢摩擦磨损性能的影响[J]. 金属热处理, 2023, 48(11): 250-254. Zhao Dongmei, Ni Lei, Jiang Dongxu, et al. Effect of cryogenic treatment on friction and wear properties of DC53 cold work die steel[J]. Heat Treatment of Metals, 2023, 48(11): 250-254. [15]李东辉, 肖茂果, 孙 浩, 等. 深冷处理对H13钢组织结构和热稳定性的影响[J]. 钢铁, 2020, 55(2): 95-102, 118. Li Donghui, Xiao Maoguo, Sun Hao, et al. Effects of deep cryogenic treatment on microstructure and thermal stability of H13 steel[J]. Iron and Steel, 2020, 55(2): 95-102, 118. [16]Liu Xiao, Zhao Chunfang, Zhao Kang. Microstructure evolution and mechanical/physical properties of 25# valve alloys steel subjected to deep cryogenic treatment[J]. Vacuum, 2019, 160: 394-401. [17]Tyshchenko A I, Theisen W, Oppenkowski A, et al. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel[J]. Materials Science and Engineering A, 2010, 527(26): 7027-7039. [18]林文星, 付秀丽, 孟 莹, 等. 材料表面位错密度的测量方法研究[J]. 工具技术, 2017, 51(6): 10-14. Lin Wenxing, Fu Xiuli, Meng Ying, et al. Review of methods for measuring dislocations density on surface of materials[J]. Tool Engineering, 2017, 51(6): 10-14. [19]刘 勇, 朱景川, 王 洋, 等. XRD线形傅氏分析方法研究TA15合金热压缩变形后的位错[J]. 稀有金属材料与工程, 2008, 37(9): 1505-1509. Liu Yong, Zhu Jingchuan, Wang Yang, et al. Research on dislocations for hot compressively deformed TA15 alloy by X-ray diffraction method and a profile analysis theory[J]. Rare Metal Materials and Engineering, 2008, 37(9): 1505-1509. [20]Wang K, Gu K, Miao J, et al. Toughening optimization on a low carbon steel by a novel quenching-partitioning-cryogenic-tempering treatment[J]. Materials Science and Engineering A, 2018, 743: 259-264. |