[1]聂德福, 赵 杰, 莫 涛. X70管线钢的室温蠕变及其对流变应力的影响[J]. 材料工程, 2006(6): 58-61.
Nie Defu, Zhao Jie, Mo Tao. Room temperature creep and its effect on flow stress in X70 pipeline steel[J]. Journal of Materials Engineering, 2006(6): 58-61.
[2]马秋林, 张 莉, 徐 宏, 等. 工业纯钛TA2室温蠕变第1阶段特性研究[J]. 稀有金属材料与工程, 2007(1): 11-14.
Ma Qiulin, Zhang Li, Xu Hong, et al. Primary creep characteristics of TA2 at room temperature[J]. Rare Metal Materials and Engineering, 2007(1): 11-14.
[3]李 芹. LD10铝合金常温态蠕变行为[D]. 大连: 大连理工大学, 2011.
[4]Yamada T, Kawabata K, Sato E, et al. Presences of primary creep in various phase metals and alloys at ambient temperature[J]. Materials Science and Engineering A, 2004, 387-389: 719-722.
[5]陈立杰, 谢里阳, 冮铁强. GH4049镍基高温合金的高温蠕变行为[J]. 中国有色金属学报, 2004, 14(9): 1489-1493.
Chen Lijie, Xie Liyang, Gang Tieqiang. Tensile creep behavior of GH4049 nickle-based superalloy at high temperature[J]. Transactions of Nonferrous Metals Society of China, 2004, 14(9): 1489-1493.
[6]Barkia B, Doquet V, Couzinié J P, et al. Room-temperature creep and stress relaxation in commercial purity titanium-influence of the oxygen and hydrogen contents on incubation phenomena and aging-induced rejuvenation of the creep potential[J]. Materials Science and Engineering A, 2015, 624(21): 79-89.
[7]Jie Z, Tao M, Nie D. The occurrence of room-temperature creep in cracked 304 stainless steel specimens and its effect on crack growth behavior[J]. Materials Science and Engineering A, 2008, 483(1): 572-575.
[8]Gao G Y, Dexter S C. Effect of hydrogen on creep behavior of Ti-6Al-4V alloy at room temperature[J]. Metallurgical Transactions A, 1991, 18(6): 1125-1130.
[9]Oriani R A, Josephic P H. The effects of hydrogen on the room-temperature creep of spheroidized 1040-steel[J]. Acta Metallurgica, 1981, 29(4): 669-674.
[10]Barkia B, Doquet V, Couzinié J P, et al. Room-temperature creep and stress relaxation in titanium: influence of oxygen and hydrogen contents[C]// Proceedings of the 13th World Conference on Titanium. John Wiley and Sons, Ltd, 2016: 701-706.
[11]仲莹莹, 张新明, 邓运来, 等. ZM6合金室温蠕变机理研究[J]. 特种铸造及有色合金, 2009, 29(4): 378-381.
Zhong Yingying, Zhang Xinming, Deng Yunlai, et al. Creep mechanism of Mg-Nd-Zn-Zr (ZM6) alloy of ambient temperature[J]. Special Casting and Nonferrous Alloys, 2009, 29(4): 378-381.
[12]陈 吉, 汪 伟, 卢 磊, 等. 纳米压痕法测量Cu的室温蠕变速率敏感指数[J]. 金属学报, 2001, 37(11): 1179-1183.
Chen Ji, Wang Wei, Lu Lei, et al. Measurement of creep rate sensitivity of copper at room temperature by using nanoindentation[J]. Acta Metallurgica Sinica, 2001, 37(11): 1179-1183.
[13]马秋林, 李占斌, 徐 宏, 等. 工业纯钛室温蠕变性能试验[J]. 华东理工大学学报(自然科学版), 2004, 30(6): 702-705.
Ma Qiulin, Li Zhanbin, Xu Hong, et al. Experimental study on the creep performance of titanium at room temperature[J]. Journal of East China University of Science and Technology, 2004, 30(6): 702-705.
[14]岳珠峰, 吕震宙. 双剪切试样在镍基单晶合金蠕变变形损伤和寿命研究中的应用[J]. 金属学报, 2002, 38(8): 809-813.
Yue Zhufeng, Lü Zhenzhou. Application of the double shear specimens in the study of the creep damage and rupture of the nickel-base single crystal superalloys[J]. Acta Metallurgica Sinica, 2002, 38(8): 809-813.
[15]张荣华. 深冷处理对Cu-11.74Al-0.38Ni合金蠕变抗力的影响[J]. 金属热处理, 2014, 39(10): 118-120.
Zhang Ronghua. Effect of cryogenic treatment on creep resistance of Cu-11.74Al-0.38Ni alloy[J]. Heat Treatment of Metals, 2014, 39(10): 118-120.
[16]杨 镇, 王志文. 小冲杆蠕变试样中心挠度-蠕变应变关系的有限元分析[J]. 化工机械, 2004, 31(1): 24-27.
Yang Zhen, Wang Zhiwen. Finite element analysis of the relation between the center deflection and the creep strain of a small punch specimen[J]. Chemical Engineering and Machinery, 2004, 31(1): 24-27.
[17]岳珠峰, 胡卫兵, 吕震宙. 双剪切试样用于短纤维金属基复合材料的蠕变响应研究[J]. 金属学报, 2003, 39(1): 104-108.
Yue Zhufeng, Hu Weibin, Lü Zhenzhou. Application of the double shear creep specimens on the fiber-reinforced metal matrix composites[J]. Acta Metallurgica Sinica, 2003, 39(1): 104-108.
[18]陈大明, 康沫狂. 起落架用超高强度钢的屈强比问题[J]. 航空材料学报, 1992, 12(1): 50-56.
Chen Daming, Kang Mokuang. A question about yield to strength ratio of ultra-high strength steel for landing gear[J]. Journal of Aeronautical Materials, 1992, 12(1): 50-56.
[19]李晓红, 樊玉光, 徐学利, 等. X80高屈强比管线钢性能分析与管道安全性预测[J]. 机械科学与技术, 2005, 24(9): 1074-1076.
Li Xiaohong, Fan Yuguang, Xu Xueli, et al. On mechanical characteristics of high yield ratio X80 pipeline steel and the safety forecasting of the pipeline[J]. Mechanical Science and Technology, 2005, 24(9): 1074-1076.
[20]辛希贤, 姚婷珍, 张刊林, 等. 高屈强比管线钢的安全性分析[J]. 焊管, 2006, 29(4): 36-39.
Xin Xixian, Yao Tingzhen, Zhang Kanlin, et al. Analysis on security of pipeline steel with high yield ratio[J]. Welded Pipe and Tube, 2006, 29(4): 36-39.
[21]梁浩宇. 金属材料的高温蠕变特性研究[D]. 太原: 太原理工大学, 2013.
[22]Alden T H. Theory of plastic and viscous deformation[J]. Metallurgical and Materials Transactions A, 1987, 18(6): 811-826.
[23]王廷喜. 弹簧钢的应力松弛行为研究[D]. 成都: 西南交通大学, 2012.
[24]孟龙晖, 杨吟飞, 何 宁. 纳米压痕法测量Ti6Al4V钛合金室温蠕变应力指数[J]. 稀有金属材料与工程, 2016, 45(3): 617-622.
Meng Longhui, Yang Yinfei, He Ning. Nanoindentation measurement of creep stress exponent of Ti6Al4V alloy at room temperature[J]. Rare Metal Materials and Engineering, 2016, 45(3): 617-622.
[25]黎永钧, 韩庆辉. 铜及其合金室温蠕变的研究[J]. 西安交通大学学报, 1993(1): 39-44.
Li Yongjun, Han Qinghui. Creep behaviour of copper and its alloy at room temperature[J]. Journal of Xi'an Jiao Tong University, 1993(1): 39-44.
[26]李京波. 输油管道用钢的蠕变和松弛特性研究[D]. 上海: 上海交通大学, 2015. |