[1]Warren J, Wei D Y. The low cycle fatigue behavior of the controlled transformation stainless steel alloy AM355 at 121, 204 and 315 ℃[J]. Materials Science and Engineering A, 2008, 475(1): 148-156. [2]Man C, Dong C, Cui Z, et al. A comparative study of primary and secondary passive films formed on AM355 stainless steel in 0.1 M NaOH[J]. Applied Surface Science, 2018, 427: 763-773. [3]胡家齐, 刘荣佩, 梁剑雄, 等. 时效处理对AM355钢组织和力学性能的影响[J]. 金属热处理, 2016, 41(1): 58-65. Hu Jiaqi, Liu Rongpei, Liang Jianxiong, et al. Effects of aging treatment on microstructure and mechanical properties of AM355 steel[J]. Heat Treatment of Metals, 2016, 41(1): 58-65. [4]胡家齐, 刘荣佩, 梁剑雄, 等. 调整处理对AM355不锈钢微观组织与力学性能的影响[J]. 金属热处理, 2015, 40(6): 91-96. Hu Jiaqi, Liu Rongpei, Liang Jianxiong, et al. Effects of intermediate treatment on microstructure and mechanical properties of AM355 stainless steel[J]. Heat Treatment of Metals, 2015, 40(6): 91-96. [5]Dong D, Chen F, Cui Z. Investigation on metadynamic recrystallization behavior in SA508-Ш steel during hot deformation[J]. Journal of Manufacturing Processes, 2017, 29: 18-28. [6]Tsao L C, Chen C H, Wu R W, et al. Plastic flow behavior, microstructure, and corrosion behavior of AZ61 Mg alloy during hot compression deformation[J]. Journal of Manufacturing Processes, 2015, 18: 167-174. [7]Xiao G, Zhu N, Long J, et al. Research on precise control of microstructure and mechanical properties of Ni-based superalloy cylindrical parts during hot backward flow spinning[J]. Journal of Manufacturing Processes, 2018, 34: 140-147. [8]Chen J, Liu Y, Liu C, et al. Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel[J]. Journal of Materials Research, 2017, 32(7): 1376-1385. [9]Liu Y, Xiong W, Yang Q, et al. Constitutive behavior and processing map of T2 pure copper deformed from 293 to 1073 K[J]. Journal of Materials Engineering and Performance, 2018, 27(4): 1812-1824. [10]Wang Z, Qiang H, Wang X, et al. Constitutive model for a new kind of metastable β titanium alloy during hot deformation[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(3): 634-641. [11]Wan Z, Sun Y, Hu L, et al. Dynamic softening behavior and microstructural characterization of TiAl-based alloy during hot deformation[J]. Materials Characterization, 2017, 130: 25-32. [12]Zhang Y, Sun H, Volinsky A A, et al. Constitutive model for hot deformation of the Cu-Zr-Ce alloy[J]. Journal of Materials Engineering and Performance, 2018, 27(2): 728-738. [13]Lin Y C, Nong F Q, Chen X M, et al. Microstructural evolution and constitutive models to predict hot deformation behaviors of a nickel-based superalloy[J]. Vacuum, 2017, 137: 104-114. [14]Shi Z, Yan X, Duan C, et al. Effect of strain rate on hot deformation characteristics of GH690 superalloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(3): 538-550. [15]Taleghani M A J, Torralba J M. Hot deformation behavior and workability characteristics of AZ91 magnesium alloy powder compacts—A study using processing map[J]. Materials Science and Engineering A, 2013, 580: 142-149. [16]Wang S, Lei G A O, Li D, et al. Hot deformation behavior and workability of pre-extruded ZK60A magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1822-1830. [17]Zhou Y, Chen Z, Ji J, et al. Optimization of hot deformation parameters and constitutive analysis for as-cast Mg-5Li-3Zn-0.3Y alloy using processing maps[J]. Journal of Materials Engineering and Performance, 2018, 27(9): 4606-4615. [18]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied physics, 1944, 15(1): 22-32. [19]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138. [20]Prasad Y, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. [21]Prasad Y, Seshacharyulu T. Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering A, 1998, 243(1/2): 82-88. [22]Prasad Y, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998, 43(6): 243-258. [23]Pu E, Zheng W, Song Z, et al. Characterization of hot deformation behavior of a Fe-Cr-Ni-Mo-N superaustenitic stainless steel using dynamic materials modeling[J]. Journal of Materials Engineering and Performance, 2017, 26(3): 1424-1432. [24]Xi T, Yang C, Shahzad M B, et al. Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel[J]. Materials and Design, 2015, 87: 303-312. [25]Sun L, Thomas M J, Wynne B P, et al. Mapping microstructure inhomogeneity using electron backscatter diffraction in 316L stainless steel subjected to hot plane strain compression tests[J]. Materials Science and Technology, 2010, 26(12): 1477-1486. [26]Zhang C, Zhang L, Shen W, et al. Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr-Ni-Mo alloyed steel[J]. Materials and Design, 2016, 90: 804-814. [27]Xu L X, Wu H B, Wang X T. Influence of microstructural evolution on the hot deformation behavior of an Fe-Mn-Al duplex lightweight steel[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 389-400. [28]Wu C, Han S. Hot deformation behavior and dynamic recrystallization characteristics in a low-alloy high-strength Ni-Cr-Mo-V steel[J]. Acta Metallurgica Sinica, 2018, 31(9): 963-974. [29]Bao X, Wang J, Wang X, et al. Effects of lanthanum on hot deformation behaviour of Mn-Cr-Mo bainitic rail steel[J]. Journal of Rare Earths, 2018, 36(7): 772-780. [30]Chai R X, Zhang C W, Guo W, et al. Hot deformation behavior and processing map of 40MnBH alloy steel[J]. Steel Research International, 2017, 88(5): 1600281. [31]Chen Z, Nash P. Hot deformation behavior and processing maps for a large marine crankshaft S34MnV steel[J]. Steel Research International, 2018, 89(3): 1700321. [32]Jang M H, Kang J Y, Jang J H, et al. Hot deformation behavior and microstructural evolution of alumina-forming austenitic heat-resistant steels during hot compression[J]. Materials Characterization, 2017, 123: 207-217. [33]Zhang P, Hu C, Zhu Q, et al. Hot compression deformation and constitutive modeling of GH4698 alloy[J]. Materials and Design, 2015, 65: 1153-1160. [34]Srinivasulu S, Jain A. A comparative analysis of training methods for artificial neural network rainfall-runoff models[J]. Applied Soft Computing, 2006, 6(3): 295-306. [35]Babu K A, Mandal S, Athreya C N, et al. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel[J]. Materials and Design, 2017, 115: 262-275. [36]Mirzadeh H, Cabrera J M, Najafizadeh A. Constitutive relationships for hot deformation of austenite[J]. Acta Materialia, 2011, 59(16): 6441-6448. [37]Ji G, Li F, Li Q, et al. Research on the dynamic recrystallization kinetics of Aermet100 steel[J]. Materials Science and Engineering A, 2010, 527(9), 2350-2355. [38]Chen F, Cui Z, Chen S. Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part I: Dynamic recrystallization[J]. Materials Science and Engineering A, 2011, 528(15): 5073-5080. |