[1]Hopkins A K, Jata K V, Rioja R J. Isotropic wrought aluminum-lithium plate development technology[C]//Materials Science Forum. Trans Tech Publications Ltd, 1996, 217: 421-426. [2]Jata K V, Hopkins A K, Rioja R J. The anisotropy and texture of Al-Li alloys[C]//Materials Science Forum. Trans Tech Publications Ltd, 1996, 217: 647-652. [3]Jr E A S, Williams J C. Progress in structural materials for aerospace systems1[J]. Acta Materialia, 2003, 51(19): 5775-5799. [4]王喜琴, 张贵一, 王业伟. 2195铝锂合金热处理工艺研究[J]. 上海航天, 2014, 31(S1): 53-55. Wang Xiqin, Zhang Guiyi, Wang Yewei. Heat treatment process of 2195 aluminum-lithium alloy[J]. Aerospace Shanghai, 2014, 31(S1): 53-55. [5]范雪松, 郑子樵, 陈向荣. 时效工艺对2297铝锂合金组织与力学性能的影响[J]. 粉末冶金材料科学与工程, 2017, 22(2): 184-189. Fan Xuesong, Zheng Ziqiao, Chen Xiangrong. Effect of aging process on microstructure and mechanical properties of 2297 Al-Li alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(2): 184-189. [6]赵志龙. 2090铝锂合金中δ′相和T1相的复合强化作用[J]. 中国有色金属学报, 2006, 16(1): 89-93. Zhao Zhilong. Co-strengthening contribution of δ′ and T1 phases of Al-Li alloy 2090[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(1): 89-93. [7]郑子樵, 李劲风, 陈志国, 等. 铝锂合金的合金化与微观组织演化[J]. 中国有色金属学报, 2011, 21(10): 2337-2351. Zheng Ziqiao, Li Jinfeng, Chen Zhiguo, et al. Alloying and microstructural evolution of Al-Li alloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2337-2351. [8]Bay B, Hansen N, Hughes D A, et al. Overview No. 96 evolution of fcc deformation structures in polyslip[J]. Acta Metallurgica et Materialia, 1992, 40(2): 205-219. [9]Zhang X, Godfrey A, Huang X, et al. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire[J]. Acta Materialia, 2011, 59(9): 3422-3430. [10]Hansen N. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004, 51(8): 801-806. [11]Yoshimura R, Konno T J, Abe E, et al. Transmission electron microscopy study of the early stage of precipitates in aged Al-Li-Cu alloys[J]. Acta Materialia, 2003, 51(10): 2891-2903. [12]Chen Z, Zhao K, Fan L. Combinative hardening effects of precipitation in a commercial aged Al-Cu-Li-X alloy[J]. Materials Science and Engineering: A, 2013, 588: 59-64. [13]黄兰萍, 郑子樵, 黄永平. 2197 铝锂合金的组织和性能[J]. 中国有色金属学报, 2004, 14(12): 2066-2072. Huang Lanping, Zheng Ziqiao, Huang Yongping. Microstructure and properties of 2197Al-Li alloy[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(12): 2066-2072. [14]Jo H H, Hirano K I. Precipitation processes in Al-Cu-Li alloy studied by DSC[C]//Materials Science Forum. Trans Tech Publications Ltd, 1987, 13: 377-382. [15]Williams D B, Edington J W. The precipitation of δ′(Al3Li) in dilute aluminum-lithium alloys[J]. Metal Science, 1975, 9(1): 529-532. [16]付小强, 马 超, 鲍鹏里, 等. 时效处理对新型铝锂合金组织及力学性能的影响[J]. 金属热处理, 2014, 39(5): 70-73. Fu Xiaoqiang, Ma Chao, Bao Pengli, et al. Effects of aging treatment on microstructure and mechanical properties of a new-type aluminum-lithium alloy[J]. Heat Treatment of Metals, 2014, 39(5): 70-73. [17]潘 毅, 孙中刚, 郭 旋, 等. 时效工艺对Al-Li-Cu-Mg合金组织及力学性能的影响[J]. 金属热处理, 2013, 38(7): 179-181. Pan Yi, Sun Zhonggang, Guo Xuan, et al. Effects of aging treatment on microstructure and properties of Al-Li-Cu-Mg alloy[J]. Heat Treatment of Metals, 2013, 38(7): 179-181. [18]Kim J D, Park J K. Effect of stretching on the precipitation kinetics of an Al2.0Li2.8Cu0.5Mg(-0.13Zr) alloy[J]. Metallurgical and Materials Transactions A, 1993, 24(12): 2613-2621. [19]王东林. 新型铝锂合金析出相析出规律及相关机理研究[D]. 长沙: 中南大学, 2009. [20]Cassada W A, Shiflet G J, Starke E A. Mechanism of Al2CuLi (T1) nucleation and growth[J]. Metallurgical Transactions A, 1991, 22(2): 287-297. |