[1]Bamberger M, Dehm G. Trends in the development of new Mg alloys[J]. Annual Review of Materials Research, 2008, 38(1): 505-533.
[2]Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Materials Science and Engineering A, 2001, 302(1): 37-45.
[3]陈振华. 镁合金[M]. 北京: 化学工业出版社, 2004.
[4]Yang Z, Li J P, Zhang J X, et al. Review on research and development of magnesium alloys[J]. Acta Metallurgica Sinica(English Letters), 2008, 21(5): 313-328.
[5]Basu I, Al-Samman T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium[J]. Acta Materialia, 2014, 67(2): 116-133.
[6]Basu I, Al-Samman T, Gottstein G. Shear band-related recrystallization and grain growth in two rolled magnesium-rare earth alloys[J]. Materials Science and Engineering: A, 2013, 579(9): 50-56.
[7]Rao G S, Prasad Y V R K. Grain boundary strengthening in strongly textured magnesium produced by hot rolling[J]. Metallurgical Transactions A, 1982, 13(12): 2219-2226.
[8]Hantzsche K, Bohlen J, Wendt J, et al. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets[J]. Scripta Materialia, 2010, 63(7): 725-730.
[9]Al-Samman T, Li X. Sheet texture modification in magnesium-based alloys by selective rare earth alloying[J]. Materials Science and Engineering A, 2011, 528(10/11): 3809-3822.
[10]Farzadfar S A, Martin É, Sanjari M, et al. On the deformation, recrystallization and texture of hot-rolled Mg-2.9Y and Mg-2.9Zn solid solution alloys—A comparative study[J]. Materials Science and Engineering A, 2012, 534(2): 209-219.
[11]Imandoust A, Barrett C D, Oppedal A L, et al. Nucleation and preferential growth mechanism of recrystallization texture in high purity binary magnesium-rare earth alloys[J]. Acta Materialia, 2017, 138: 27-41.
[12]Stanford N, Sabirov I, Sha G, et al. Effect of Al and Gd solutes on the strain rate sensitivity of magnesium alloys[J]. Metallurgical and Materials Transactions A, 2010, 41(3): 734-743.
[13]Griffiths D. Explaining texture weakening and improved formability in magnesium rare earth alloys[J]. Materials Science and Technology, 2015, 31(1): 10-24.
[14]Jahedi M, Mcwilliams B A, Moy P, et al. Deformation twinning in rolled WE43-T5 rare earth magnesium alloy: Influence on strain hardening and texture evolution[J]. Acta Materialia, 2017, 131: 221-232.
[15]Chino Y, Huang X, Suzuki K, et al. Influence of Zn concentration on stretch formability at room temperature of Mg-Zn-Ce alloy[J]. Materials Science and Engineering: A, 2010, 528(2): 566-572.
[16]Wu D, Chen R S, Han E H. Excellent room-temperature ductility and formability of rolled Mg-Gd-Zn alloy sheets[J]. Journal of Alloys and Compounds, 2011, 509(6): 2856-2863.
[17]Ball E A, Prangnell P B. Tensile-compressive yield asymmetries in high strength wrought magnesium alloys[J]. Scripta Metallurgica et Materialia, 1994, 31(2): 111-116.
[18]Robson J D, Zhou X, Thompson G E. Magnesium research: Scientific challenges[J]. Materials Technology, 2009, 24(3): 133-136.
[19]Watanabe H, Mukai T, Ishikawa K. Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy[J]. Journal of Materials Processing Technology, 2007, 182(1/3): 644-647.
[20]Huang X, Suzuki K, Saito N. Enhancement of stretch formability of Mg-3Al-1Zn alloy sheet using hot rolling at high temperatures up to 823 K and subsequent warm rolling[J]. Scripta Materialia, 2009, 61(4): 445-448.
[21]Huang X, Suzuki K, Watazu A, et al. Effects of thickness reduction per pass on microstructure and texture of Mg-3Al-1Zn alloy sheet processed by differential speed rolling[J]. Scripta Materialia, 2009, 60(11): 964-967.
[22]Kaseem M, Chung B K, Yang H W, et al. Effect of deformation temperature on microstructure and mechanical properties of AZ31 Mg alloy processed by differential-speed rolling[J]. Journal of Materials Science and Technology, 2015, 31(5): 498-503.
[23]Hamad K, Ko Y G. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys[J]. Scientific Reports, 2016, 6(1): 29954.
[24]Jun J H, Park B K, Kim J M, et al. Microstructures and mechanical properties of Mg-Zn-RE-Ca casting alloys[J]. Materials Science Forum, 2006, 510-511: 214-217.
[25]Zhou T, Xia H, Yang M, et al. Investigation on microstructure characterizations and phase compositions of rapidly solidification/powder metallurgy Mg-6wt%Zn-5wt%Ce-1.5wt%Ca alloy[J]. Journal of Alloys and Compounds, 2011, 509(9): 145-149.
[26]Zhang Q, Tong L, Cheng L, et al. Effect of Ce/La microalloying on microstructural evolution of Mg-Zn-Ca alloy during solution treatment[J]. Journal of Rare Earths, 2015, 33(1): 70-76.
[27]Stanford N, Sha G, Fontaine A L, et al. Atom probe tomography of solute distributions in Mg-based alloys[J]. Metallurgical and Materials Transactions A, 2009, 40(10): 2480-2487.
[28]Huang D, Liu S, Xu H, et al. Phase equilibria of the Mg-Mn-Zn system at 593 K (320 ℃)[J]. Journal of Alloys and Compounds, 2016, 688: 1115-1124.
[29]Guan D, Rainforth W M, Gao J, et al. Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: Part 1- double twins[J]. Acta Materialia, 2017, 135: 14-24.
[30]Agnew S R, Yoo M H, Tomé C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Materialia, 2001, 49(20): 4277-4289.
[31]Huang X, Suzuki K, Chino Y. Different annealing behaviours of warm rolled Mg-3Al-1Zn alloy sheets with dynamic recrystallized microstructure and deformation microstructure[J]. Materials Science and Engineering: A, 2013, 560(1): 232-240. |