[1]陈海全. 应用形状记忆合金的大跨桥梁结构振动控制理论研究与振动台试验[D]. 天津: 天津大学, 2003. Chen Haiquan. Application of shape memory alloy in the vibration control theory and shaking table test of long-span bridges[D]. Tianjin: Tianjin University, 2003. [2]王林伟. 形状记忆合金对钢筋混凝土梁驱动效应的ANSYS分析[D]. 大连: 大连理工大学, 2004. Wang Linwei. Analysis of the effect of the ANSYS shape memory alloy on the driving effect of the reinforced concrete beam[D]. Dalian: Dalian University of Technology, 2004. [3]侯俊峰. 形状记忆合金阻尼器在某古塔抗震加固中的研究与应用[D]. 西安: 西安建筑科技大学, 2006. Hou Junfeng. Study and application of shape memory alloy damper in seismic strengthening of Guta[D]. Xi'an: Xi'an University of Architecture and Technology, 2006. [4]崔 迪. 形状记忆合金及其智能混凝土结构研究[D]. 大连: 大连理工大学, 2007. Cui Di. Study on shape memory alloy and its intelligent concrete structure[D]. Dalian: Dalian University of Technology, 2007. [5]李 松. 近断层地震激励下SMA—滑移隔震结构的动力响应研究[D]. 兰州: 兰州理工大学, 2011. Li Song. Research on the dynamic response of SMA-slip seismic isolation structure under near fault earthquake[D]. Lanzhou: Lanzhou University of Technology, 2011. [6]马 强. 形状记忆合金加固混凝土圆柱的机理分析[D]. 长沙: 中南大学, 2013. Ma Qiang. Mechanism analysis of reinforced concrete columns with shape memory alloys[D]. Changsha: Central South University, 2013. [7]梁 赛. 形状记忆合金减震器在框架结构抗震中的应用与研究[D]. 石家庄: 石家庄铁道大学, 2014. Liang Sai. Application and research of shape memory alloy damper in seismic resistance of frame structure[D]. Shijiazhuang: Shijiazhuang Railway University, 2014. [8]王周峰. 基于形状记忆合金的结构裂缝自修复理论研究[D]. 兰州: 兰州理工大学, 2014. Wang Zhoufeng. Theoretical research on structural crack self repair based on shape memory alloy[D]. Lanzhou: Lanzhou University of Technology, 2014. [9]文先哲, 张 旋. 热处理工艺对NiTi形状记忆合金马氏体相变的影响[J]. 湖南有色金属, 1998, 14(5): 21-24. Wen Xianzhe, Zhan Xuan. Influence of heat treatment process on martensitic transformation of NiTi shape memory alloy[J]. Hunan Nonferrous Metals, 1998, 14(5): 21-24. [10]谢庆峰, 李 浩, 高 岩. 热处理对NiTi形状记忆合金的相变的影响[J]. 材料开发与应用, 2007, 22(2): 5-7. Xie Qingfeng, Li Hao, Gao Yan. Effects of heat treatment on phase transformation of NiTi shape memory alloys[J]. Materials Development and Application, 2007, 22(2): 5-7. [11]姜 飞. 时效对富Ni的NITi合金相变和力学行为的影响[D]. 哈尔滨: 哈尔滨工程大学, 2008. Jiang Fei. Effect of aging on phase transformation and mechanical behavior of NITi rich Ni alloys[D]. Harbin: Harbin Engineering University, 2008. [12]梁楚锜. 时效NiTi基记忆合金的马氏体相变行为与超弹性[D]. 哈尔滨: 哈尔滨工程大学, 2012. Liang Chuqi. Martensitic transformation behavior and super elasticity of aging NiTi based memory alloys[D]. Harbin: Harbin Engineering University, 2012. [13]黄 婷. Nb 含量和热处理对多孔 NiTi(Nb)记忆合金超弹性行为的影响研究[D]. 广州: 华南理工大学, 2014. Huang Ting. Effects of Nb content and heat treatment on the elastic behavior of porous NiTi (Nb) memory alloys[D]. Guangzhou: South China University of Technology, 2014. [14]Sinha A, Mondal B, Chattopadhyay P P. Mechanical properties of Ti-(49 at%) Ni shape memory alloy: Part I. Effect of cold deformation[J]. Materials Science and Engineering: A, 2013, 561: 338-343. [15]Sinha A, Mondal B, Chattopadhyay P P. Mechanical properties of Ti-(49 at%) Ni shape memory alloy: Part II. Effect of ageing treatment[J]. Materials Science and Engineering: A, 2013, 561: 344-351. [16]Giri S K, Krishnan M, Ramamurty U. Enhancement of fatigue life of Ni-Ti-Fe shape memory alloys by thermal cycling[J]. Materials Science and Engineering: A, 2010, 528: 363-370. [17]Elibol C, Wagner M F-X. Strain rate effects on the localization of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear[J]. Materials Science and Engineering: A, 2015, 643: 194-202. [18]Fang Han, Wong M B, Bai Yu, et al. Effect of heating/cooling rates on the material properties of NiTi wires for civil structural applications[J]. Construction and Building Materials, 2015, 101: 447-455. [19]宋文远, 王文明. 金属基复合材料弹性模量的研究现状[J]. 材料导报, 2006, 20: 416-419. Song Wenyuan, Wang Wenming. The research status of the elastic modulus of metal matrix composites[J]. Materials Review, 2006, 20: 416-419. [20]Sutou Y, Omori T, Yamauchi K, et al. Effect of grain size and texture on pseudoelastieity in Cu-Al-Mn-based shape memory wire[J]. Acta Materialia, 2005, 53(15): 4121-4133. [21]吴佩泽, 贺志荣, 王 芳, 等. 辊速对激冷贫镍Ti-Ni形状记忆合金薄带组织和相变的影响[J]. 金属热处理, 2018, 43(10): 67-71. Wu Peize, He Zhirong, Wang Fang, et al. Effect of roller speed on microstructure and phase transformation of chilled Ni-poor Ti-Ni shape memory alloy strips[J]. Heat Treatment of Metals, 2018, 43(10): 67-71. [22]叶 茂, 淡 婷, 史杰宾, 等. 微量Sc掺杂Ti-V-Al合金马氏体相变与形状记忆效应[J]. 金属热处理, 2019, 44(6): 100-103. Ye Mao, Dan Ting, Shi Jiebin, et al. Martensite transformation and shape memory effect of Ti-V-Al alloy doping minor Sc[J]. Heat Treatment of Metals, 2019, 44(6): 100-103. [23]冯 辉, 贺志荣, 王 芳, 等. 退火温度对Ti-51.1Ni形状记忆合金超弹性的影响[J]. 金属热处理, 2019, 44(3): 120-123. Feng Hui, He Zhirong, Wang Fang, et al. Effect of annealing temperature on superelasticity of Ti-51.1Ni shape memory alloy[J]. Heat Treatment of Metals, 2019, 44(3): 120-123. [24]Omori T, Sutou Y, Wang J J, et al. Effect of microstructure on two-way shape memory effect in Cu-Al-Mn alloys[J]. Journal de Physique IV(Proceeding), 2003, 112: 507-510. |