[1]瓦卢瑞克·曼内斯曼钢管公司. T23/T24管材手册-水冷壁和过热器用新材料[C]. 2005: 205-322. Vallourec and Mannesmann Tubes. Handbook of T23/T24 Pipes-New Materials for Water Wall and Superheater[C]. 2005: 205-322. [2]Masuyama F, Koyoyama T. Development of a tungsten strengthened low alloy steel with improved weldability[J]. Boiler Manufacturing, 1996. [3]Viswanathan R, Nutting J. Advanced heat resistant steel for power generation[J]. San Sebastian, Spain, 1998: 27-29. [4]王 学, 李夕强, 杨 超, 等. 超超临界锅炉水冷壁T23接头时效性能[J]. 动力工程学报, 2015, 35(4):325-330. Wang Xue, Li Xiqiang, Yang Chao, et al. Aging properties of T23 weld joint in water wall of USC boilers, Journal of Chinese Society of Power Engineering, 2015, 35(4): 325-330). [5]Park K, Kim S, Chang J, et al. Post-weld heat treatment cracking susceptibility of T23 weld metals for fossil fuel applications[J]. Materials and Design, 2012, 34: 699-706. [6]Chang J C, Heo N H, Lee C H. Intergranular cracking susceptibility of 2.25Cr1.3W and 9Cr1MoVNb weld metals at elevated temperatures[J]. Metals and Materials International, 2010, 16(6): 981-985. [7]Strader K, Alexandrov B T, Lippold J C. Stress-Relief Cracking in Simulated-Coarse-Grained Heat Affected Zone of a Creep-Resistant Steel[M]//Cracking Phenomena in Welds IV. Springer International Publishing, 2016. [8]Heo N H, Chang J C, Yoo K B, et al. The mechanism of elevated temperature intergranular cracking in heat-resistant alloys[J]. Material Science and Engineering A, 2011, 528: 2678-2685. [9]Li Y, Wang X, Wang J Q, et al. Stress-relief cracking mechanism in simulated coarse-grained heat-affectedz one of T23 steel[J]. Journal of Materials Processing Technology, 2019, 266: 73-81. [10]金玉静, 周 巍. 改良型T23钢CGHAZ再热裂纹开裂特征[J]. 金属热处理, 2017(11):197-203. Jin Yujing, Zhou Wei. Characteristics of reheat cracking in CGHAZ of modified T23 steel[J]. Heat treatment of Metals, 2017, 42(11):197-203). [11]Nawrocki J G, Dupont J N, Robino C V, et al. The stress-relief cracking susceptibility of a new ferritic steel-Part I: Single-pass heat-affected zone simulations[J]. Welding Journal Research Suppliment, 1999. [12]Nakamura H, Naiki T, Okabayashi H. Stress-relief cracking in heat-affected zone[J]. Ishikawajima-Harima Research Institute Report, Tokyo, Japan, 1969. [13]Indacochea J E, Kim G S. Reheat cracking studies on simulated heat-affected zones of CrMoV turbine rotor steels[J]. Journal of Materials Engineering and Performance, 1996, 5(3): 353-364. [14]Vinckier A G, Pense A W. A review of underclad cracking in pressure-vessel components[J]. WRC Bulletin, 1974. [15]金玉静. T23钢粗晶热影响区再热裂纹敏感性研究[D]. 上海: 上海交通大学, 2015. Jin Yujing. Study on the susceptibility to reheat-cracking in the CGHAZ of T23 steel[D]. Shanghai: Shanghai Jiao Tong University, 2015. [16]Vinckier A, Dhooge A. Reheat cracking in welded structures during stress relief heat treatments[J]. Journal of Heat Treating, 1979, 1: 72-80. |