[1]Zhang L F, Chen K, Du D H, et al. Characterizing the effect of creep on stress corrosion cracking of cold worked alloy 690 in supercritical water environment[J]. Journal of Nuclear Materials, 2017, 492: 32-40. [2]Stiller K, Nilsson J O, Norring K. Structure, chemistry, and stress corrosion cracking of grain boundaries in alloys 600 and 690[J]. Metallurgical and Materials Transactions A, 1996, 27(2): 327-341. [3]Young B A, Gao X, Srivatsan T S, et al. An investigation of the fatigue crack growth behavior of INCONEL 690[J]. Materials Science and Engineering A, 2006, 416(1/2): 187-191. [4]Kim D J, Kim H P, Hwang S S. Susceptibility of alloy 690 to stress corrosion cracking in caustic aqueous solutions[J]. Nuclear Engineering and Technology, 2013, 45(1): 67-72. [5]李军业, 吴 辉, 宋志刚, 等. 爆破阀剪切盖材料690合金热处理工艺[J]. 阀门, 2016(3): 22-25. Li Junye, Wu Hui, Song Zhigang, et al. Heat treatment process for 690 alloy used for shear cap for squib valve[J]. Valve, 2016(3): 22-25. [6]付正鸿, 刘锦云, 查五生, 等. 塑性区对Inconel 690合金腐蚀疲劳裂纹扩展行为的影响[J]. 金属热处理, 2016, 41(3): 145-148. Fu Zhenghong, Liu Jinyun, Cha Wusheng, et al. Effect of plastic zone on corrosion fatigue crack propagation behavior of Inconel 690 alloy[J]. Heat Treatment of Metals, 2016, 41(3): 145-148. [7]李 强, 周邦新. 690合金的显微组织研究[J]. 金属学报, 2001, 37(1): 8-12. Li Qiang, Zhou Bangxin. A study of microstructure of alloy 690[J]. Acta Metallurgica Sinica, 2001, 37(1): 8-12. [8]Lee T H, Suh H Y, Han S K, et al. Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes[J]. Journal of Nuclear Materials, 2016, 479: 85-92. [9]Liu Z Y, Hou Q, Li C T, et al. Correlation between grain boundaries, carbides and stress corrosion cracking of alloy 690TT in a high temperature caustic solution with lead[J]. Corrosion Science, 2018, 144: 97-106. [10]Kuang W, Was G S. The effects of grain boundary carbide density and strain rate on the stress corrosion cracking behavior of cold rolled alloy 690[J]. Corrosion Science, 2015, 97: 107-114. [11]郑 磊, 张麦仓, 董建新. 690合金平衡相析出规律的热力学数值模拟[J]. 稀有金属材料与工程, 2012, 41(6): 983-988. Zheng Lei, Zhang Maicang, Dong Jianxin. Thermodynamic simulation of precipitating behaivour of equilibrium phases in alloy 690[J]. Rare Metal Materials and Engineering, 2012, 41(6): 983-988. [12]Kurban M, Erb U, Aust K T. A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel[J]. Scripta Materialia, 2006, 54(6): 1053-1058. [13]Palumbo G, Aust K T, Lehockey E M, et al. On a more restrictive geometric criterion for “Special” CSL grain boundaries[J]. Scripta Materialia, 1998, 38(11): 1685-1690. [14]周思源, 郑文杰, 宋志刚, 等. 碳含量对690合金组织和力学性能的影响及强化机制[J]. 钢铁, 2012, 47(8): 52-56. Zhou Siyuan, Zheng Wenjie, Song Zhigang, et al. Effect of carbon content on microstructure, mechanical properties of 690 alloy steel and analysis of strengthening mechanisms[J]. Iron and Steel, 2012, 47(8): 52-56. [15]丰 涵, 宋志刚, 郑文杰, 等. Inconel 690镍基合金平衡相的热力学计算和试验分析[J]. 特殊钢, 2008, 29(4): 13-15. Feng Han, Song Zhigang, Zheng Wenjie, et al. Thermodynamic calculation and experimental analysis on equilibrium phase in nickel-base alloy 690[J]. Special Steel, 2008, 29(4): 13-15. [16]丰 涵. 热处理工艺对Inconel 690合金组织和性能的影响研究[D]. 北京: 钢铁研究总院, 2008. [17]毛卫民. 金属再结晶与晶粒长大[M]. 北京: 冶金工业出版社, 1994. [18]雍歧龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [19]李志刚. 一种镍铁基变形高温合金中退火孪晶界的演变与力学行为[D]. 上海: 上海交通大学, 2015. [20]夏 爽. 690合金中晶界分布特征及其演化机理的研究[D]. 上海: 上海大学, 2008. [21]胡庚祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010. [22]Shaw L L, Ortiz A L, Villegas J C. Hall-Petch relationship in a nanotwinned nickel alloy[J]. Scripta Materialia, 2008, 58(11): 951-954. [23]Roth H A, Davis C L, Thomson R C. Modeling solid solution strengthening in nickel alloys[J]. Metallurgical and Materials Transactions A (Physical Metallurgy and, Materials Science), 1997, 28(6): 1329-1335. |