[1]Balusamy T, Sankara Narayanan T S N, Ravichandran K, et al. Pack boronizing of AISI H11 tool steel: Role of surface mechanical attrition treatment[J]. Vacuum, 2013, 97: 36-43. [2]赵 蓉, 吴 忠, 刘 磊, 等. 喷丸对金属材料耐蚀性能影响的研究进展[J]. 金属热处理, 2018, 43(12): 88-94. Zhao Rong, Wu Zhong, Liu Lei, et al. Research progress in effect of shot peening on corrosion resistance of metallic materials[J]. Heat Treatment of Metals, 2018, 43(12): 88-94. [3]Ozdemir O, Omar M A, Usta M, et al. An investigation on boriding kinetics of AISI 316 stainless steel[J]. Vacuum, 2009, 83(1): 175-179. [4]Genel K. Boriding kinetics of H13 steel[J]. Vacuum, 2006, 80(5): 451-457. [5]Campos-Silva I, Ortiz-Domínguez M, López-Perrusquia N, et al. Characterization of AISI 4140 borided steels[J]. Applied Surface Science, 2010, 256(8): 2372-2379. [6]Dybkov V I, Lengauer W, Barmak K. Formation of boride layers at the Fe-10%Cr alloy-boron interface[J]. Journal of Alloys and Compounds, 2013, 398(1/2): 113-122. [7]Cimenoglu H, Atar E, Motallebzadeh A. High temperature tribological behavior of borided surfaces based on the phase structure of the boride layer[J]. Wear, 2014, 309(1/2): 152-158. [8]Sen S, Sen U, Bindal C. Tribological properties of oxidised boride coatings grown on AISI 4140 steel[J]. Materials Letters, 2006, 60(29/30): 3481-3486. [9]Kariofillis H G K, Kiourtsidis G E, Tsipas D N. Corrosion behavior of borided AISI H13 hot work steel[J]. Surface Coatings Technology, 2006, 201(1/2): 19-24. [10]Medvedovski E, Jiang J, Robertson M. Iron boride-based thermal diffusion coatings for tribo-corrosion oil production applications[J]. Ceramics International, 2015, 42(2): 3190-3211. [11]Gutierrez-Noda L, Cuao-Moreu C A, Perez-Acosta O, et al. The effect of a boride diffusion layer on the tribological properties of AISI M2 steel[J]. Wear, 2019, 426-427(B): 1667-1671. [12]朱延松, 卢文壮, 左敦稳, 等. 新型损伤容限型钛合金TC21稀土催化固体渗硼[J]. 稀有金属材料与工程, 2014, 43(3): 693-697. Zhu Yansong, Lu Wenzhuang, Zuo Dunwen, et al. Characteristics of Re-B surface diffusion process on the new damage tolerance TC21 alloy[J]. Rare Metal Materials and Engineering, 2014, 43(3): 693-697. [13]Vidakis N, Antoniadis A, Bilalis N. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds[J]. Journal of Materials Processing Technology, 2003, 143-144: 481-485. [14]曹宇鹏, 蒋苏州, 花国然, 等. 激光冲击强化金属材料微观组织变化的研究进展[J]. 金属热处理, 2017, 42(10): 125-131. . Cao Yupeng, Jiang Suzhou, Hua Guoran, et al. Research progress on microstructure changes of metallic materials by laser shock processing[J]. Heat Treatment of Metals, 2017, 42(10): 125-131. [15]王庆相, 王君龙. W-Ti-N 薄膜的制备及其热稳定性[J]. 金属热处理, 2018, 43(12): 220-225. Wang Qingxiang, Wang Junlong. Preparation of W-Ti-N thin film and its thermal stability[J]. Heat Treatment of Metals, 2018, 43(12): 220-225. [16]赵景浩, 罗 宏. 球墨铸铁粉末渗硼的耐蚀性能研究[J]. 热加工工艺, 2014, 43(12): 166-180. Zhao Jinghao, Luo Hong. Study on corrosion resistance of ductile cast iron with boride layer[J]. Hot Working Technology, 2014, 43(12): 166-180. [17]董鲜峰. 铁基粉末冶金材料烧结渗硼工艺及组织、性能研究[D]. 长春: 吉林大学, 2010. Dong Xianfeng. Study on the process, structures and properties of sintering-boronizing of Fe-based powder metallurgy materials[D]. Changchun: Jilin University, 2010. [18]杨 哲, 杨浩鹏, 吴晓春, 等. H13钢双保温固体渗硼高温磨损机理[J]. 材料研究学报, 2014, 28(3): 220-226. Yang Zhe, Yang Haopeng, Wu Xiaochun, et al. Friction and wear mechanism at elevated temperature of H13 steel with a duplex pack boriding treatment[J]. Chinese Journal of Materials Research, 2014, 28(3): 220-226. [19]Cimenoglu H, Atar E, Motallebzadeh A. High temperature tribological behavior of borided surfaces based on the phase structure of the boride layer[J]. Wear, 2014, 309(1/2): 152-158. [20]Günen A, Ulutan M, Gök M S, et al. Friction and wear behavior of borided AISI 304 stainless steel with nano particle and micro particle size of boriding agents[J]. Journal of the Balkan Tribological Association, 2014, 20(3): 362-379. |