[1]高红梅, 文 超, 孙轶山. 显微组织和温度对 42CrMo4 钢力学性能的影响[J]. 材料热处理学报, 2018, 39(3): 87-92. Gao Hongmei, Wen Chao, Sun Yishan. Effects of microstructure and temperature on mechanical properties of 42CrMo4 steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(3): 87-92. [2]刘敬平, 王翠芳, 卢 杉. 42CrMo 钢半轴的断裂失效分析[J]. 热加工工艺, 2017, 46(16): 251-253. Liu Jingping, Wang Cuifang, Lu Shan. Fracture failure analysis of 42CrMo steel half shaft[J]. Hot Working Technology, 2017, 46(16): 251-253. [3]戴玉同, 陈 洪, 钱喜根. 42CrMo 钢大型环锻件的热处理工艺改进[J]. 金属热处理, 2014, 39(1): 120-123. Dai Yutong, Chen Hong, Qian Xigen. Heat treatment process improvement for 42CrMo steel large ring forging[J]. Heat Treatment of Metals, 2014, 39(1): 120-123. [4]管敏超, 李振华, 左训伟, 等. 42CrMo 钢大直径长轴件的淬火冷却工艺[J]. 金属热处理, 2015, 40(1): 74-78. Guan Minchao, Li Zhenhua, Zuo Xunwei, et al. Quenching process for 42CrMo steel large diameter and long shaft[J]. Heat Treatment of Metals, 2015, 40(1): 74-78. [5]孙 岩, 安治国, 张国涛, 等. Cr-Mo系调质钢的连续冷却转变规律[J]. 金属热处理, 2019, 44(4): 62-65. Sun Yan, An Zhiguo, Zhang Guotao, et al. Continuous cooling transformation law of Cr-Mo quenched and tempered steel[J]. Heat Treatment of Metals, 2019, 44(4): 62-65. [6]Jiang B, Zhou L, Wen X, et al. Heat treatment properties of 42CrMo steel for bearing ring of varisized shield tunneling machine[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 383-388. [7]刘雅政, 黄 斌, 蒋 波, 等. 盾构机轴承用钢的开发与质量控制[J]. 钢铁, 2014, 49(5): 1-6. Liu Yazheng, Huang Bin, Jiang Bo, et al. Development and quality control of bearing steel for tunnel shield machine[J]. Iron and Steel, 2014, 49(5): 1-6. [8]李昭昆, 雷建中, 徐海峰, 等. 国内外轴承钢的现状与发展趋势[J]. 钢铁研究学报, 2016, 28(3): 1-12. Li Zhaokun, Lei Jianzhong, Xu Haifeng, et al. Current status and development of bearing steel in China and abroad[J]. Journal of Iron and Steel Research, 2016, 28(3): 1-12. [9]Zhao H, Wynne B P, Palmiere E J. Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling[J]. Materials Characterization, 2017, 123: 128-136. [10]Kakhki M E, Kermanpur A, Golozar M A. Numerical simulation of continuous cooling of a low alloy steel to predict microstructure and hardness[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17(4): 045007. [11]Zhao M C, Yang K, Xiao F R, et al. Continuous cooling transformation of undeformed and deformed low carbon pipeline steels[J]. Materials Science and Engineering A, 2003, 355(1/2): 126-136. [12]Zhang C, Cai D, Wang Y, et al. Effects of deformation and Mo, Nb, V, Ti on continuous cooling transformation in Cu-P-Cr-Ni-Mo weathering steels[J]. Materials Characterization, 2008, 59(11): 1638-1642. [13]De Andrés C G, Capdevila C, Caballero F G, et al. Effect of molybdenum on continuous cooling transformations in two medium carbon forging steels[J]. Journal of Materials Science, 2001, 36(3): 565-571. [14]李晓成, 郑亚风, 吴晓春. 晶粒尺寸对贝氏体钢SDP1的连续冷却转变规律的影响[J]. 材料导报, 2018, 31(6): 86-92. Li Xiaocheng, Zheng Yafeng, Wu Xiaochun. Influence of grain size on continuous cooling transformation rules of a bainitic steel SDP1[J]. Materials Review, 2018, 31(6): 86-92. [15]何雪松, 左鹏鹏, 吴晓春. Ni对新型压铸模具钢连续冷却转变规律的影响[J]. 材料热处理学报, 2015, 36(10): 134-140. He Xuesong, Zuo Pengpeng, Wu Xiaochun. Effect of Ni on continuous cooling transformation characteristic of new type die-casting steels[J]. Transactions of Materials and Heat Treatment, 2015, 36(10): 134-140. [16]Tartaglia J M, Kuelz A N, Thelander V H. The Effects of alloying elements on the continuous cooling transformation behavior of 21/4Cr-1Mo steels[J]. Journal of Materials Engineering and Performance, 2018, 27(12): 6349-6364. [17]王 纳, 张 宇, 李小宝, 等. Mn和 Mo对耐候钢连续冷却转变行为和强度的影响[J]. 金属热处理, 2015, 40(3): 6-10. Wang Na, Zhang Yu, Li Xiaobao, et al. Effects of Mn and Mo on continuous cooling transformation behavior and strength of weathering steel[J]. Heat Treatment of Metals, 2015, 40(3): 6-10. [18]陈明毅, 杨占兵, 陈 曦, 等. 一种高强无碳贝氏体非调质钢的过冷奥氏体动态连续冷却转变曲线[J]. 金属热处理, 2018, 43(11): 11-15. Chen Mingyi, Yang Zhanbing, Chen Xi, et al. Dynamic continuous cooling transformation curves of under-cooled austenite of a kind of high strength carbide-free bainite non-quenched and tempered steel[J]. Heat Treatment of Metals, 2018, 43(11): 11-15. [19]胡 光, 史显波, 曾云鹏, 等. 铜对管线钢连续冷却转变行为的影响[J]. 金属热处理, 2019, 44(7): 106-111. Hu Guang, Shi Xianbo, Zeng Yunpeng, et al. Effect of copper on continuous cooling transformation behavior of pipeline steels[J]. Heat Treatment of Metals, 2019, 44(7): 106-111. [20]蒋 波, 霍朝霞, 周乐育, 等. 奥氏体变形和 Mn 对 42CrMo 钢连续冷却相变组织的影响[J]. 材料热处理学报, 2014, 30(8): 119-124. Jiang Bo, Huo Zhaoxia, Zhou Leyu, et al. Effect of austenite deformation and manganese content on microstructure of continuous cooling transformation of 42CrMo steel[J]. Transactions of Materials and Heat Treatment, 2014, 30(8): 119-124. [21]Liu J, Yu H, Zhou T, et al. Effect of double quenching and tempering heat treatment on the microstructure and mechanical properties of a novel 5Cr steel processed by electro-slag casting[J]. Materials Science and Engineering A, 2014, 619: 212-220. [22]Jiang B, Dong Z, Zhou L, et al. Microstructural characterization and hardening mechanism of steel for large size bearing ring under fast heating and short soaking time condition[J]. Steel Research International, 2016, 87(9): 1127-1136. [23]Wang X, Du L, Xie H, et al. Effect of deformation on continuous cooling phase transformation behaviors of 780 MPa Nb-Ti ultra-high strength steel[J]. Steel Research International, 2011, 82(12): 1417-1424. [24]张 宇, 刘仁东, 王科强, 等. 42CrMo 钢动态CCT 曲线及组织转变[J]. 金属热处理, 2012, 37(12): 37-40. Zhang Yu, Liu Rendong, Wang Keqiang, et al. Dynamic continuous cooling transformation curves and microstructure evolution of 42CrMo steel[J]. Heat Treatment of Metals, 2012, 37(12): 37-40. |