[1]Otsuka K, Wayman C M. Shape Memory Materials[M]. Cambridge: Cambridge University Press, 1998. [2]Ozcan H, Ma Ji, Wang S J, et al. Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires[J]. Scripta Materialia, 2017, 134: 66-70. [3]Fu H D, Zhao H M, Zhang Y X, et al. Enhancement of superelasticity in Fe-Ni-Co-based shape memory alloys by microstructure and texture control[J]. Procedia Engineering, 2017, 207: 1505-1510. [4]Tanaka Y, Himuro Y, Kainuma R. Ferrous polycrystalline shape-memory alloy showing huge superelasticity[J]. Science, 2010, 327: 1488-1490. [5]Ma J, Hornbuckle B C, Karaman I, et al. The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals[J]. Acta Materialia, 2013, 61(9): 3445-3455. [6]Evirgen A, Ma J, Karaman I, et al. Effect of aging on the superelastic response of a single crystalline FeNiCoAlTa shape memory alloy[J]. Scripta Materialia, 2012, 67(5): 475-478. [7]Chen Z X, Peng W Y. Fe-Ni-Al-Ta polycrystalline shape memory alloys showing excellent superelasticity[J]. Functional Materials Letters, 2020, 13(1): 1950096-1-4. [8]李新梅, 张忠文, 邹 勇, 等. 高温时效对Super304钢奥氏体点阵常数的影响[J]. 材料导报B, 2014, 28(6): 102-104. Li Xinmei, Zhang Zhongwen, Zou Yong, et al. Lattice parameter evolution of Super304H steel γ phase aged at high temperature[J]. Materials Reports B, 2014, 28(6): 102-104. [9]渠桂丽, 彭文屹, 陈朝霞, 等. 时效时间对FeNiCoAlNbB 合金组织和性能的影响[J]. 金属热处理, 2015, 40(3): 109-113. Qu Guili, Peng Wenyi, Chen Zhaoxia, et al. Influence of aging time on microstructure and mechanical properties of FeNiCoAlNbB alloy[J]. Heat Treatment of Metals, 2015, 40(3): 109-113. [10]冯 辉, 贺志荣, 王 芳, 等. 退火温度对Ti-51.1Ni 形状记忆合金超弹性的影响[J]. 金属热处理, 2019, 44(3): 120-123. Feng Hui, He Zhirong, Wang Fang, et al. Effect of annealing temperature on superelasticity of Ti-51.1Ni shape memory alloy[J]. Heat Treatment of Metals, 2019, 44(3): 120-123. |