[1]周 宇, 杨贤金, 崔振铎. 新型医用β-钛合金的研究现状及发展趋势[J]. 金属热处理, 2005, 30(1): 47-50. Zhou Yu, Yang Xianjin, Cui Zhenduo. Present status and development trend of novel β titanium alloys for biomedical applications[J]. Heat Treatment of Metals, 2005, 30(1): 47-50. [2]翟大军, 税 玥, 袁 满, 等. α相含量及形态对TC4钛合金组织和力学性能的影响[J]. 金属热处理, 2019, 44(10): 129-134. Zhai Dajun, Cheng Yue, Yuan Man, et al. Effects of content and morphology of α phase on microstructure and mechanical properties of TC4 alloy[J]. Heat Treatment of Metals, 2019, 44(10): 129-134. [3]Martin-Camean A, Jos A, Mellado-Garcia P, et al. In vitro and in vivo evidence of the cytotoxic and genotoxic effects of metal ions released by orthodontic applications: A review[J]. Environmental Toxicology and Pharmacology, 2015, 40(1): 86-113. [4]Song Xiu, Niinomi M, Tsutsumi H. Effects of TiB on the mechanical properties of Ti-29Nb-13Ta-4.6Zr alloy for use in biomedical applications[J]. Materials Science and Engineering A, 2011, 528(16/17): 5600-5609. [5]Raducannu D, Vasilescu E, Cojocaru V D, et al. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2004, 4(7): 1421-1430. [6]黄海广, 张玉勤, 蒋业华, 等. 放电等离子烧结温度对Ti-29Nb-13Ta-4.6Zr合金显微组织和力学性能的影响[J]. 稀有金属材料与工程, 2013, 42(6): 1173-1177. Huang Haiguang, Zhang Yuqin, Jiang Yehua, et al. Effect of spark plasma sintering temperatures on microstructure and mechanical properties of Ti-29Nb-13Ta-4.6Zr alloy[J], Rare Metal Materials and Engineering, 2013, 42(6): 1173-1177. [7]Yamako G, Chosa E, Kotoribe K, et al. In-vitro biomechanical evaluation of stress shielding and initial stability of a low-modulus hip stem made of β type Ti-33.6Nb-4Sn alloy[J]. Medical Engineering and Physics, 2014, 36(12): 1665-1671. [8]葛 鹏, 赵永庆, 周 廉. 热处理对1种新型亚稳态β钛合金组织与性能的影响[J]. 稀有金属材料与工程, 2014, 33(9): 968-971. Ge Peng, Zhao Yongqing, Zhou Lian. Effect of heat treatment on microstructure and mechanical properties of a new type metastable beta titanium alloy[J]. Rare Metal Materials and Engineering, 2014, 33(9): 968-971. [9]Rajabi F, Zarei Hanzaki A, Abedi H R, et al. Corrosion behavior of thermo-mechanically processed biomedical Ti-29Nb-13Ta-4.6Zr[J]. Journal of Alloys and Compounds, 2017, 725(25): 23-31. [10]徐健丰, 陶 姗. 不同时效处理的Ti-29Nb-13Ta-4.6Zr合金的组织结构和医用性能[J]. 材料保护, 2011, 44(12): 74-76. Xu Jianfeng, Tao Shan. Microstructure and medical performance of Ti-29Nb-13Ta-4.6Zr alloy after aging treatment[J]. Materials Protection, 2011, 44(12): 74-76. [11]郝玉琳, 杨 锐, 李述军, 等. 时效处理对Ti-29Nb-13Ta-4.6Zr医用钛合金Young's模量和力学性能的影响[J]. 金属学报, 2002, 38(S1): 126-129. Hao Yulin, Yang Rui, Li Shujun, et al. Aging response of Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications[J]. Acta Metallurgica Sinica, 2002, 38(S1): 126-129. |