[1]刘宗昌, 任慧平, 郝少祥. 金属材料工程概论[M]. 北京: 冶金工业出版社, 2007: 190-191. [2]马静芬, 冯雅明. 40Cr和42CrMoA钢曲轴氮碳共渗工艺的优化[J]. 金属热处理, 2006, 31(3): 67-70. Ma Jingfen, Feng Yaming. Optimization of the nitrocarburizing process for 40Cr and 42CrMoA steel crankshaft[J]. Heat Treatment of Metals, 2006, 31(3): 67-70. [3]罗德福, 李惠友. QPQ技术的现状和展望[J]. 金属热处理, 2004, 29(1): 39-44. Luo Defu, Li Huiyou. Current situation and prospect of QPQ technology[J]. Heat Treatment of Metals, 2004, 29(1): 39-44. [4]李惠友, 罗德福, 吴少旭. QPQ技术的原理与应用[M]. 北京: 机械工业出版社, 2008. [5]祝 伟, 罗德福. 低温盐浴渗氮工艺研究[C]//金属加工杂志社. 2012年先进节能热处理技术与装备研讨会论文集. 2012: 77-79. [6]林 峰, 腾清泉, 刘洪涛, 等. 低温盐浴氮碳共渗工艺的研究[J]. 热处理, 2005, 20(1): 35-39. Lin Feng, Teng Qingquan, Liu Hongtao, et al. Study on low temperature liquid nitrocarburizing[J]. Heat Treatment, 2005, 20(1): 35-39. [7]薛文斌, 金 乾, 刘 润, 等. 甘油浓度对不锈钢表面液相等离子体电解渗透过程的影响[J]. 中国有色金属学报, 2013(3): 882-887. Xue Wenbin, Jin Qian, Liu Run, et al. Influence of glycerin concentration on plasma electrolytic saturation process of stainless steel surface[J]. The Chinese Journal of Nonferrous Metals, 2013(3): 882-887. [8]张 荣, 马 颖, 郝 远. 45#钢液相等离子体电解渗透表面改性技术研究[J]. 新技术新工艺, 2009(4): 86-89. Zhang Rong, Ma Ying, Hao Yuan. Surface modification technology research on 45# steel liquid-phase infiltration plasma electrolytic saturation[J]. New Technology and New Process, 2009(4): 86-89. [9]吴 勉, 张良界, 潘 邻, 等. QPQ技术的现状和发展趋势[J]. 材料保护, 2014, 47(S2): 41-45. [10]戴明阳, 魏坤霞, 陈 尧, 等. 空气预氧化与盐浴预氧化对盐浴渗氮催渗效果的对比[J]. 中国表面工程, 2016, 29(6): 38-43. Dai Mingyang, Wei Kunxia, Chen Yao, et al. Comparison of enhancement effect between air pre-oxidation and salt bath pre-oxidation on salt bath nitriding[J]. China Surface Engineering, 2016, 29(6): 38-43. |