[1]Li Zhiming, Qian Shiqiang, Wang Wei. Characterization and oxidation behavior of NiCoCrAlY coating fabricated by electrophoretic deposition and vacuum heat treatment[J]. Applied Surface Science, 2011, 257(10): 4616-4620. [2]曹玉霞. 航空发动机高温固体润滑耐磨涂层的制备与性能研究[D]. 北京: 中国科学院过程工程研究所, 2012. Cao Yuxia. Preparation and performance study on the solid lubricating and wear-resistant coatings in turbo-engine at elevated temperatures[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2012. [3]李运初, 毛 杰, 邓子谦, 等. 低温超音速火焰喷涂MCrAlY涂层的高温氧化[J]. 金属热处理, 2017, 42(6): 51-55. Li Yunchu, Mao Jie, Deng Ziqian, et al. High temperature oxidation of MCrAlY coating prepared by low temperature high velocity oxygen-fuel spraying[J]. Heat Treatment of Metals, 2017, 42(6): 51-55. [4]Wu Bin, Xu Binshi, Zhang Bin, et al. Preparation and properties of Ni/nano-Al2O3 composite coatings by automatic brush plating[J]. Surface and Coatings Technology, 2007, 201(16/17): 6933-6939. [5]Zhao Lidong, Parco Maria, Lugscheider Erich. Wear behaviour of Al2O3 dispersion strengthened MCrAlY coating[J]. Surface and Coatings Technology, 2004, 184(23): 298-306. [6]Song Chuanwang, Li Mingxi. Effect of nano-CeO2 on the microstructure and properties of laser clad nickel-based alloy coating[J]. Laser Technology, 2006, 30(3): 228-231. [7]曹玉霞. 大气等离子喷涂NiCoCrAlY/Al2O3-30%B4C复合涂层的抗氧化性能[J]. 金属热处理, 2016, 41(3): 147-150. Cao Yuxia. Oxidation resistance of APS NiCoCrAlY/Al2O3-30%B4C composite coating[J]. Heat Treatment of Metals, 2016, 41(3): 147-150. [8]曹玉霞. 等离子喷NiCoCrAlY/Al2O3-30%B4C复合涂层的摩擦性能[J]. 材料热处理学报, 2016, 37(4): 205-209. Cao Yuxia. Tribological properties of atmospheric plasma-sprayed NiCoCrAlY/Al2O3-B4C composite coatings[J]. Transactions of Materials and Heat Treatment, 2016, 37(4): 205-209. [9]李长青, 叶雄林, 邓智昌. 超音速等离子喷涂纳米结构Al2O3-13%TiO2涂层的形成机理[J]. 金属热处理, 2016, 41(10): 71-74. Li Changqing, Ye Xionglin, Deng Zhichang. Formation mechanism of nanostructured Al2O3-13%TiO2 coating fabricated by supersonic plasma spraying[J]. Heat Treatment of Metals, 2016, 37(10): 71-74. [10]Liang Bo, Ding Chuanxian. Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying[J]. Surface and Coatings Technology, 2005, 197(2/3): 185-192. [11]Zhu Yingchun, Yukimura Ken, Ding Chuanxian, et al. Tribological properties of nanostructured and conventional WC-Co coatings deposited by plasma spraying[J]. Thin Solid Films, 2001, 388(1/2): 277-282. [12]Zhao Xiaoqin, Zhou Huidi, Chen Jianmin. Comparative study of the friction and wear behavior of plasma sprayed conventional and nano-structured WC-12%Co coatings on stainless steel[J]. Materials Science and Engineering A, 2006, 431(2): 290-297. [13]Luo Hong, Goberman Daniel, Shaw Leon, et al. Indentation fracture behavior of plasma-sprayed nanostructured Al2O3-13wt.%TiO2 coatings[J]. Materials Science and Engineering A, 2003, 346(1/2): 237-245. [14]Zhang Hui, He Yizhu. Research progress on nano-particle reinforced metal matrix composite coatings[J]. Journal of Anhui University of Technology, 2006, 23(1): 21-25. |