[1]Dong H X, Jiang Y, He Y H, et al. Formation of porous Ni-Al intermetallics through pressureless reaction synthesis[J]. Journal of Alloys and Compounds, 2009, 484(1/2): 907-913. [2]Wu L, Jiang Y, Dong H X, et al. The corrosion behavior of porous Ni3Al intermetallics materials in strong alkali solution[J]. Intermetallics, 2011, 19(11): 1759-1765. [3]历 勇, 王春旭, 黄顺喆, 等. 超高强度钢中M2C和β-NiAl相的复合析出强化行为[J]. 金属热处理, 2018, 43(6): 50-54. Li Yong, Wang Chunxu, Huang Shunzhe, et al. Combined precipitation strengthening behavior of M2C carbides and β-NiAl intermetallics in ultrahigh strength steel[J]. Heat Treatment of Metals, 2018, 43(6): 50-54. [4]Wei N, Cui H Z, Wu J, et al. The effects of forming conditions and TiC-TiB2 contents on the microstructures of self-propagating high-temperature synthesized NiAl-TiC-TiB2 composites[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 39-47. [5]Zhu X, Zhang T, Marchant D, et al. Combustion synthesis of TiC-NiAl composite by induction heating[J]. Journal of the European Ceramic Society, 2010, 30(13): 2781-2790.[6]孙 淼, 国大鹏, 杨 滨. 熔铸-原位合成TiC/7075Al复合材料的微观组织和凝固机制[J]. 金属热处理, 2012, 37(4): 15-19. Sun Miao, Guo Dapeng, Yang Bin. Microstructure and solidifying mechanism of TiC/7075 aluminium composite prepared by melt in-situ synthesis[J]. Heat Treatment of Metals, 2012, 37(4): 15-19. [7]刘罗锦, 孙新军, 梁小凯, 等. TiC颗粒增强低合金铁素体钢的耐磨性能[J]. 金属热处理, 2020, 45(2): 56-60. Liu Luojin, Sun Xinjun, Liang Xiaokai, et al. Wear resistance of TiC particle reinforced low alloy ferritic wear-resistant steel[J]. Heat Treatment of Metals, 2020, 45(2): 56-60. [8]李文虎. Mo/TiC含量对Mo2FeB2-TiC复相金属陶瓷组织和性能的影响[J]. 金属热处理, 2019, 44(8): 73-77. Li Wenhu. Effect of Mo/TiC content on microstructure and properties of Mo2FeB2-TiC multiphase cermets[J]. Heat Treatment of Metals, 2019, 44(8): 73-77. [9]Kobashi M, Kanetake N. Processing of intermetallic foam by combustion reaction[J]. Advanced Engineering Materials, 2002, 4(10): 745-747. [10]Hunt E M, Pantoya M L, Jouet R J. Combustion synthesis of metallic foams from nanocomposite reactants[J]. Intermetallics, 2006, 14(6): 620-629. [11]崔洪芝. 多孔金属间化合物/陶瓷载体材料研究[D]. 青岛: 中国石油大学(华东), 2009. [12]梁英教, 车荫昌, 刘晓霞, 等. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1992. [13]迟 静, 李 敏, 王淑峰, 等. TiC生成方式对激光熔覆镍基涂层组织和性能的影响[J]. 中国表面工程, 2017, 30(4): 134-141. Chi Jing, Li Min, Wang Shufeng, et al. Effects of TiC formation modes on microstructure and performance of Ni-based laser cladding coatings[J]. China Surface Engineering, 2017, 30(4): 134-141. [14]刘亚楠, 孙荣禄, 张天刚. Ni对钛合金表面稀土激光熔覆层中TiC生长的影响[J]. 金属热处理, 2018, 43(9): 16-21. Liu Yanan, Sun Ronglu, Zhang Tiangang. Influence of Ni on TiC growth in rare earth laser clad layer on titanium alloy[J]. Heat Treatment of Metals, 2018, 43(9): 16-21. [15]胡志强. 无机材料科学基础教程[M]. 北京: 化学工业出版社, 2011. |