[1]郭 红, 刘 英, 李 卫. 挖掘机斗齿的磨损机制与选材研究[J]. 材料导报, 2014, 28(7): 99-103. Guo Hong, Liu Ying, Li Wei. The investigation of wear mechanism and material selection of bucket teeth on excavator[J]. Materials Review, 2014, 28(7): 99-103. [2]张伟旗. 大型矿山挖掘机斗齿失效机制及控制研究[J]. 有色设备, 2017(3): 5-10. Zhang Weiqi. Study on the failure mechanism and control of bucket teeth in large-scale mine excavator[J]. Nonferrous Metallurgical Equipment, 2017(3): 5-10. [3]孙家枢. 金属的磨损[M]. 北京: 冶金工业出版社, 1992. [4]唐春霞, 曹文全. 耐磨钢的国内生产现状及发展前景[J]. 宽厚板, 2018, 24(3): 37-41. Tang Chunxia, Cao Wenquan. Current production situation and development prospect of wear resistant steel at home[J]. Wide and Heavy Plate, 2018, 24(3): 37-41. [5]周志丹, 陈 烜, 刘金龙. 提高挖掘机斗齿寿命的研究现状和发展[J]. 煤矿机械, 2011, 32(3): 7-9. Zhou Zhidan, Chen Yuan, Liu Jinglong. Study on development and improving lifetime of excavator teeth[J]. Coal Mine Machinery, 2011, 32(3): 7-9. [6]刘 俊, 门翠波. 16.8 m3铲齿开发与应用[J]. 科技信息, 2012(3): 198-199. Liu Jun, Men Cuibo. 16.8 m3 shovel tooth development and application[J]. Science and Technology Information, 2012(3): 198-199. [7]杨 帅. 辙叉用高锰钢的加热时效特性[J]. 金属热处理, 2016, 41(5): 124-128. Yang Shuai. Aging characteristics of high manganese steel used for railway crossing[J]. Heat Treatment of Metals, 2016, 41(5): 124-128. [8]王春乐. 斗轮挖掘机斗齿的研制[J]. 铸造设备研究, 2003(2): 31-33. Wang Chunle. Research for dipper-teeth of bucket wheel excavator[J]. Research Studies on Foundry Equipment, 2003(2): 31-33. [9]王 豫, 斯松华. 高锰钢加工硬化规律和机理研究[J]. 钢铁, 2001(10): 54-56. Wang Yu, Si Songhua. Research of work hardening mechanism of high manganese steel[J]. Iron and Steel, 2001(10): 54-56. [10]石晋伟, 宋自平. 提高国产矿用挖掘机斗齿性能的研究[J]. 四川水力发电, 2020, 39(1): 21-23. Shi Jinwei, Song Ziping. Study on improving the performance of bucket teeth of domestic mining excavator[J]. Sichuan Water Power, 2020, 39(1): 21-23. [11]朝志强, 吕宇鹏, 董玉平, 等. 奥氏体耐磨锰钢的研究现状与进展[J]. 钢铁研究学报, 1998(5): 63-66. Chao Zhiqiang, Lü Yupeng, Dong Yuping, et al. Current status and development of the research on austenitic wear-resistant manganese steel[J]. Journal of Iron and Steel Research, 1998(5): 63-66. [12]Dastur Y N, Leslie W C. Mechanism of work hardening in Hadfield manganese steel[J]. Metallurgical and Materials Transactions A, 1981, 12(5): 749-759. [13]Shun Tao Tsung, Wan C M, Byrne J G. A study of work hardening in austenitic Fe-Mn-C and Fe-Mn-Al-C alloys[J]. Acta Metallurgica et Materialia, 1992, 40(12): 3407-3412. [14]夏卿坤, 戴 娟, 胡冠昱, 等. 提高高锰钢斗齿使用寿命的途径[J]. 水利电力机械, 2002(5): 31-33. Xia Qingkun, Dai Juan, Hu Guanyu, et al. Methods for promoting the life expectancy of high manganese steel bucket toot[J]. Water Conservancy and Eclectric Power Machinery, 2002(5): 31-33. [15]董金波, 任思璟. 提高锤式破碎机锤头寿命的途径[J]. 煤矿机械, 2005(6): 137-138. Dong Jinbo, Ren Sijing. Methods of improving cycle life of the hammer in a crusher[J]. Coal Mine Machinery, 2005(6): 137-138. [16]李俊澎, 杜 鑫, 崔 烨, 等. 固溶处理对轻量高锰钢组织及力学性能的影响[J]. 金属热处理, 2018, 43(7): 109-114. Li Junpeng, Du Xin, Cui Ye, et al. Effect of solution treatment on microstructure and mechanical properties of light weight high manganese steel[J]. Heat Treatment of Metals, 2018, 43(7): 109-114. [17]程巨强, 康沫狂. 国内外斗齿材料的新发展[J]. 矿山机械, 1998(9): 29-30. Cheng Juqiang, Kang Mokuang. New progress of bucket tooth materials at home and abroad[J]. Mining and Processing Equipment, 1998(9): 29-30. [18]吴恩华. 国外工程机械中工作装置的耐磨材料概况[J]. 机械工程材料, 1987(3): 3-10. Wu Enhua. An outline on wear-resistant materials attachments of construction machinery and equipment in overseas[J]. Materials for Mechanical Engineering, 1987(3): 3-10. [19]于祥和, 余信武. 进口挖掘机斗齿抗磨材料及制造工艺[J]. 机械工人, 2000(11): 35-36. [20]王荣滨, 海 涛. 挖掘机铲齿新材料强化处理[J]. 机械, 1998(6): 41-43. [21]谭玉华, 马跃新. 马氏体新形态学[M]. 北京: 冶金工业出版社, 2013. Tan Yuhua, Ma Yuexin. Martensite New Morphology[M]. Beijing: Metallurgical Industry Press, 2013. [22]张 逖, 王 乾, 斯松华. 马氏体耐磨钢与贝氏体耐磨钢的组织及耐磨性能[J]. 热处理, 2013, 28(4): 41-44. Zhang Ti, Wang Qian, Si Songhua. Microstructure and wear resistance of martensite wear-resistant steel and bainite wear-resistant steel[J]. Heat Treatment, 2013, 28(4): 41-44. [23]赵振东. 制造挖掘机斗齿的低合金耐磨钢[J]. 工程机械, 1998(3): 34-35. [24]王荣滨, 镜 明. 挖掘机铲齿的低碳马氏体强化处理[J]. 金属热处理, 1997(6): 29-30. [25]万 毅. 用ZG38Mn2MoSiV制造1米3挖掘机斗齿的试验[J]. 工程机械, 1980(1): 36-38. [26]陈 丹. 组合铲齿根用钢的研制[J]. 铸造, 2009, 58(1): 18-20. Chen Dan. Steel for combination shovel tooth root[J]. Foundry, 2009, 58(1): 18-20. [27]黄胜银, 沈亚坤, 郑喜平. ZG28CrMn2VB钢的成分设计及组织热处理工艺研究[J]. 热加工工艺, 2018, 47(18): 166-168. Huang Shengyin, Shen Yakun, Zheng Xiping. Study on heat treatment process and composition design of ZG28CrMn2VB steel[J]. Hot Working Technology, 2018, 47(18): 166-168. [28]张晓波. 低碳贝氏体高强钢焊接接头组织与性能研究[D]. 兰州: 兰州理工大学, 2011. Zhang Xiaobo. Study on microstructure and properties of low-carbon bainitic high-strength steel welded joint[D]. Lanzhou: Lanzhou University of Technology, 2011. [29]汪 辉. Cr13型马氏体不锈钢的贝氏体化研究[D]. 重庆: 重庆大学, 2016. Wang Hui. Investigation of bainiting of Cr13-type martensite stainless steel[D]. Chongqing: Chongqing University, 2016. [30]刘东雨, 徐 鸿, 方鸿生, 等. 我国低碳贝氏体钢的发展[J]. 热处理, 2005(2): 12-15. Liu Dongyu, Xu Hong, Fang Hongsheng, et al. Development of low carbon bainitic steel in China[J]. Heat Treatment, 2005(2): 12-15. [31]徐 光, 操龙飞, 补丛华, 等. 超级贝氏体钢的现状和进展[J]. 特殊钢, 2012, 33(1): 18-21. Xu Guang, Cao Longfei, Bu Conghua, et al. Status and progress of super-bainitic steels[J]. Special Steel, 2012, 33(1): 18-21. [32]缪鹏飞, 童彦刚, 郭彦兵. 超低碳贝氏体钢中合金元素的作用及其对焊接性的影响[J]. 热加工工艺, 2010, 39(20): 29-32. Miu Pengfei, Tong Yangang, Guo Yanbing. Effect of alloying elements on ultra-low-carbon bainite steel and its influence on weldability[J]. Hot Working Technology, 2010, 39(20): 29-32. [33]席光兰. 钢中贝氏体组织控制工艺研究[D]. 兰州: 兰州理工大学, 2006. Xi Guanglan. Study of bainitic microstructure control process in steels[D]. Lanzhou: Lanzhou University of Technology, 2006. [34]席光兰, 马 勤. 贝氏体钢的研究现状和发展展望[J]. 材料导报, 2006(4): 78-81. Xi Guanglan, Ma Qin. The research situation and development prospect of bainitic steels[J]. Materials Review, 2006(4): 78-81. [35]Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite[J]. Materials Science and Technology, 2002, 18(3): 279-284. [36]Zhi C, Zhao A M, He J G, et al. Thermodynamic analysis and strength-toughness research of nanobainite[J]. Chinese Journal of Engineering, 2016, 38(5): 691-698. [37]Garcia-Mateo C, Caballero F G, Sourmail T, et al. Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon[J]. Materials Science and Engineering: A, 2012, 549: 185-192. [38]Caballero F, Bhadeshia H. Very strong bainite[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3/4): 251-257. [39]Yoozbashi M N, Yazdani S. Mechanical properties of nanostructured, low temperature bainitic steel designed using a thermodynamic model[J]. Materials Science and Engineering: A, 2010, 527: 3200-3205. [40]孙德勤, 吴春京, 谢建新. 贝氏体钢的研究开发现状与发展前景探讨[J]. 机械工程材料, 2003, 27(6): 4. Sun Deqin, Wu Chunjing, Xie Jianxin. Research and development of bainitic steels[J]. Materials for Mechanical Engineering, 2003, 27(6): 4. [41]Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Acceleration of low temperature bainite[J]. ISIJ International, 2003, 43(11): 1821-1825. [42]Zhao J, Wang T S, Lv B, et al. Microstructures and mechanical properties of a modified high-C-Cr bearing steel with nano-scaled bainite[J]. Materials Science and Engineering: A, 2015, 628: 327-331. [43]Bhadeshia H K D H. Properties of fine-grained steels generated by displacive transformation[J]. Materials Science and Engineering: A, 2008, 481-482: 36-39. [44]方鸿生, 郑燕康, 黄进峰, 等. 我国贝氏体钢的前景[J]. 金属热处理, 1998(7): 6-9. Fang Hongsheng, Zheng Yankang, Huang Jinfeng, et al. Prospect of bainitic steels[J]. Heat Treatment of Metals, 1998(7): 6-9. [45]李凤照, 敖 青, 姜 江, 等. 超细组织空冷贝氏体钢[J]. 金属热处理, 1998(1): 7-9. Li Fengzhao, Ao Qing, Jiang Jiang, et al. Ultrafine structure bainitic steels[J]. Heat Treatment of Metals, 1998(1): 7-9. [46]Irvine K J, Pickering F B, Gladman T. Grain-refined C-Mn steels[J]. Journal of the Iron and Steel Institute, 1967, 205: 161. [47]程巨强, 康沫狂. 准贝氏体钢使用性能研究进展[J]. 兵器材料科学与工程, 2002(1): 61-63. Cheng Juqiang, Kang Mokuang. Research progress of service properties of meta-bainite steel[J]. Ordnance Material Science and Engineering, 2002(1): 61-63. [48]刘志学, 程巨强. ZG30CrMn2Si2Mo铸钢斗齿的研制[J]. 铸造, 2005(10): 98-100. Liu Zhixue, Cheng Juqiang. Development of ZG30CrMn2Si2Mo casting steel bucket tooth[J]. Foundry, 2005(10): 98-100. [49]程巨强, 高兴明, 杜铁路. 无碳化物贝氏体铸钢斗齿、齿座材料的性能及耐磨性[J]. 工程机械, 2002(10): 41-42. [50]王莉虹. 用新型空冷贝氏体耐磨钢试制掘土机斗齿[J]. 无锡职业技术学院学报, 2004(1): 21-22. Wang Lihong. Try at making bucket-wear with the new type of aircooling antifriction steel[J]. Journal of Wuxi Institute of Technology, 2004(1): 21-22. [51]荣守范, 张 寅, 郭继伟. 铸造低合金贝氏体抗磨钢挖掘机铲齿材质的研究[J]. 铸造, 2007(4): 416-418. Rong Shoufan, Zhang Yin, Guo Jiwei. Study on the casting low alloying bainite steel grab shovel tooth with high wear resistant[J]. Foundry, 2007(4): 416-418. [52]赵兴明. 中碳中合金贝氏体耐磨钢挖掘机铲齿材质的研究[C]//中国机械工程学会. 2014中国铸造活动周论文集. 中国机械工程学会: 中国机械工程学会铸造分会, 2014: 5. [53]江利丰, 杨 启, 张广伟, 等. 大型挖掘机铲齿的结构优化及制造工艺研究[J]. 铸造技术, 2016, 37(7): 1514-1516. Jiang Lifeng, Yang Qi, Zhang Guangwei, et al. Investigation on optimum structure and process of excavator bucket tooth[J]. Foundry Technology, 2016, 37(7): 1514-1516. [54]程巨强, 王先武, 高兴明. ZG30CrMnNiMo钢的组织和性能研究[J]. 矿山机械, 2005(3): 13-14. Cheng Juqiang, Wang Xianwu, Gao Xingming. Study of microstructure and properties of ZG30CrMnNiMo steel[J]. Mining and Processing Equipment, 2005(3): 13-14. [55]杨国维. 制造矿用挖掘机斗齿的耐磨钢[J]. 工程机械, 1992(11): 37-40. Yang Guowei. Manufacture of anti-wear steel for bucket teeth in mining excavator[J]. Construction Machinery and Equipment, 1992(11): 37-40. [56]王丽娜, 李具仓, 赵爱民, 等. 低合金耐磨钢铲齿的研制[J]. 热加工工艺, 2005(7): 44-46. Wang Lina, Li Jucang, Zhao Aimin, et al. Development of low-alloy wear-resistant steel for dipper teeth[J]. Hot Working Technology, 2005(7): 44-46. |