[1]赵世佳, 赵福全, 郝 瀚, 等. 中国新能源汽车充电基础设施发展现状与应对策略[J]. 中国科技论坛, 2017 (10): 97-104. Zhao Shijia, Zhao Fuquan, Hao Han, et al. The current situation and counter measures in Chinese charging infrastructure of new energy vehicles[J]. Forum on Science and Technology in China, 2017(10): 97-104. [2]Gong H M, Wang M Q, Wang H W. New energy vehicles in China: Policies, demonstration, and progress[J]. Mitigation and Adaptation Strategies for Global Change, 2013, 18(2): 207-228. [3]Wang Jun. Cut and thrust reducing subsidies to new-energy vehicles seeks to spur the development of the industry[J]. Beijing Review, 2018(6): 31-32. [4]Yang Ziying, Tang Manping. Welfare analysis of government subsidy programs for fuel-efficient vehicles and new energy vehicles in China[J]. Environmental and Resource Economics, 2019, 74(2): 911-937. [5]Kendall M. Fuel cell development for new energy vehicles (NEVs) and clean air in China[J]. Progress in Natural Science: Materials International, 2018, 28(2): 113-120. [6]Li Xuedong, He Lin, Hu Minkang, et al. Study of integrated system on power electronics unit for electric vehicle[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 452(3): 32-83. [7]宋练鹏, 孙 伟, 尹志民. Ag 和 Zr 对 Cu-Ag-Zr 合金组织和性能的影响[J]. 金属热处理, 2006, 31(8): 46-48. Song Lianpeng, Sun Wei, Yin Zhimin. Effects of Ag and Zr on microstructures and properties of Cu-Ag-Zr alloy[J]. Heat Treatment of Metals, 2006, 31(8): 46-48. [8]王 建, 王杰芳, 郭巧能, 等. Al-Cu-Mg-Ag 合金热处理工艺的研究进展[J]. 金属热处理, 2015, 40(3): 163-168. Wang Jian, Wang Jiefang, Guo Qiaoneng, et al. Research progress of heat treatment process of Al-Cu-Mg-Ag alloys[J]. Heat Treatment of Metals, 2015, 40(3): 163-168. [9]杨 超, 陶鲭驰, 丁言飞. 无铅环保黄铜研究新进展[J]. 材料导报, 2019, 33(13): 2109-2118. Yang Chao, Tao Qingchi, Ding Yanfei. Recent progress in lead-free environmentally-friendly brasses[J]. Materials Reports, 2019, 33(13): 2109-2118. [10]Sakai Y, Schneider-Muntau H J. Ultra-high strength, high conductivity Cu-Ag alloy wires[J]. Acta Materialia, 1997, 45(3): 1017-1023. [11]Zhu Dachuan, Tang Ke, Song Mingzhao, et al. Effects of annealing process on electrical conductivity and mechanical property of Cu-Te alloys[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(2): 459-462. [12]韩建宁, 陈 亮, 周秉文, 等. Cu-Mg-Te-Y合金退火工艺研究[J]. 稀有金属材料与工程, 2014, 43(8): 2038-2042. Han Jianning, Chen Liang, Zhou Bingwen, et al. Annealing process of Cu-Mg-Te-Y alloy[J]. Rare Metal Materials and Engineering, 2014, 43(8): 2038-2042. [13]Chen Liang, Han Jianning, Zhou Bingwen, et al. Effects of rolling and annealing on microstructures and properties of Cu-Mg-Te-Y alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 1046-1052. [14]蒋 龙, 姜 锋, 戴 聪, 等. Cu-Te-Zr 合金的预变形与时效特性[J]. 中国有色金属学报, 2010, 20(5): 878-884. Jiang Long, Jiang Feng, Dai Cong, et al. Pre-deformation and aging characteristics of Cu-Te-Zr alloy[J]. Chinese Journal of Nonferrous Metals, 2010, 20(5): 878-884. [15]Hu Zeyi, Fan Caihe, Zhen Dongsheng, et al. Microstructure evolution of Al-Cu-Mg alloy during rapid cold punching and recrystallization annealing[J].Transactions of Nonferrous Metals Society of China, 2019, 29(9): 1816-1823. [16]Chen Liang, Zhou Bingwen, Han Jianning, et al. Effects of alloying and deformation on microstructures and properties of Cu-Mg-Te-Y alloys[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(12): 3697-3703. |