[1]Zackay V F, Parker E R, Fahr D, et al. The enhancement of ductility on high-strength steels[J]. Transactions of Applied Structures Mechanics, 1967, 60(2): 252-259. [2]Tomita Y, Morioka K. Effect of microstructure on transformation-induced plasticity of silicon-containing low-alloy steel[J]. Materials Characterization, 1997, 38(4): 243-250. [3]Yakubovsky O, Fonstein N, Bhattacharya D. Stress-strain behavior and bake hardening of TRIP and TRIP aided multiphase steels[C]//International Conference on TRIP-Aided High Strength Ferrous Alloys. 2002: 263-270. [4]Pichler A, Traint S, Pauli H, et al. Processing and properties of cold-rolled TRIP steels[C]//43rd Mechanical Working and Steel Processing Conference. 2001: 411-434. [5]Zhang M, Li L, Fu R Y, et al. Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels[J]. Materials Science and Engineering A, 2006, 438: 296-299. [6]熊自柳, 刘宏强, 史 远, 等. DP590钢连续冷却过程中的相变规律[J]. 机械工程材料, 2014, 38(7): 38-42+79. Xiong Ziliu, Liu Hongqiang, Shi Yuan, et al. Phase transformation rules of DP590 steel during continuous cooling[J], Materials for Mechanical Engineering, 2014, 38(7): 38-42+79. [7]衣海龙, 徐 薇, 龙雷周, 等. 钛微合金化热轧TRIP钢的连续冷却相变研究[J]. 材料工程, 2015, 43(3): 7-11. Yi Hailong, Xu Wei, Long Leizhou, et al. Transformation of Ti-microalloyed TRIP steel during continuous cooling[J]. Journal of Materials Engineering, 2015, 43(3): 7-11. [8]庞庆海, 郎庆斌, 马窦琴, 等. 2.25Cr1Mo0.25V钢连续冷却过程的相变行为[J]. 金属热处理, 2019, 44(2): 12-16. Pang Qinghai, Lang Qingbin, Ma Douqin, et al. Continuous cooling transformation behavior of 2.25Cr1Mo0.25V steel[J]. Heat Treatment of Metals, 2019, 44(2): 12-16. [9]Fonstein N, Pottore N, Lalam S H, et al. Phase transformation behavior during continuous cooling and isothermal holding of aluminum and silicon bearing TRIP steels[C]//Proceedings of the Materials Science and Technology 2003 Meeting, Chicago, IL, USA. 2003: 9-12. [10]Zhuang L, Di W U, Lü H, et al. Continuous cooling transformation behaviour of C-Si-Mn TRIP steel[J]. Journal of Iron and Steel Research, International, 2007, 14(5): 277-281. [11]Qi Y, Li J, Shi C, et al. Continuous cooling transformation of undeformed and deformed high strength crack-arrest steel plates for large container ships[J]. High Temperature Materials and Processes, 2019, 38: 183-191. [12]Du L, Yi H, Ding H, et al. Effects of deformation on bainite transformation during continuous cooling of low carbon steels[J]. Journal of Iron and Steel Research International, 2006, 13(2): 37-39. [13]Feng L L, Hu F, Zhou W, et al. Influences of alloying elements on continuous cooling phase transformation and microstructures of extremely fine pearlite[J]. Metals, 2019, 9(1): 70. [14]Patra S, Mandal A, Mandal M, et al. Ferrite grain refinement, grain size distribution, and texture after thermomechanical processing and continuous cooling of low-C steel[J]. Metallurgical and Materials Transactions A, 2019, 50(2): 947-965. [15]宋立平, 孙荣禄, 谷 文, 等. 热处理工艺对2.25Cr-1Mo-0.25V钢焊缝组织和力学性能的影响[J]. 金属热处理, 2015, 40(12): 110-113. Song Liping, Sun Ronglu, Gu Wen, et al. Effects of heat treatment process on microstructure and mechanical properties of 2.25Cr-1Mo-0.25V steel weld seam[J]. Heat Treatment of Metals, 2015, 40(12): 110-113. [16]于庆波, 孙 莹, 倪宏昕, 等. 不同类型的贝氏体组织对低碳钢力学性能的影响[J]. 机械工程学报, 2009, 45(12): 284-288. Yu Qingbo, Sun Ying, Ni Hongxin, et al. Effect of different bainitic microstructure on the mechanical properties of low-carbon steel[J]. Journal of Mechanical Engineering, 2009, 45(12): 284-288. [17]Huang H Q, Di H S, Yan N, et al. Hot deformation behavior and processing maps of a high Al-low Si transformation-induced plasticity steel: microstructural evolution and flow stress behavior[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 503-514. [18]Liang X, De Ardo A J. A study of the influence of thermomechanical controlled processing on the microstructure of bainite in high strength plate steel[J]. Metallurgical and Materials Transactions A, 2014, 45(11): 5173-5184. |