[1]Jiang J, Cui L S, Zheng Y J, et al. Effect of pre-deformation on damping capacity of NiTi/NbTi composite[J]. International Journal of Modern Physics B, 2010, 24: 2392-2397. [2]Jiang J, Cui L S, Zheng Y J, et al. Narrow hysteresis behavior of NiTi shape memory alloy constrained by NbTi matrix during incomplete transformation[J]. Materials Science and Engineering A, 2012, 536: 33-36. [3]Jiang J, Cui L S, Zheng Y J, et al. Negative thermal expansion arrest point memory effect in NiTi shape memory alloy and NbTi/NiTi composite[J]. Materials Science and Engineering A, 2012, 549: 114-117. [4]姜 江, 崔立山, 姜大强, 等. 超细片层NbTi/NiTi 记忆合金复合材料的制备与功能特性[J]. 中国石油大学学报: 自然科学版, 2012, 36(3): 151-154. Jiang Jiang, Cui Lishan, Jiang Daqiang, et al. Preparation and functional properties of ultrafine lamellar NbTi/TiNi shape memory alloy composites[J]. Journal of China University of Petroleum: Edition of Natural Science, 2012, 36(3): 151-154. [5]Jiang D Q, Jiang J, Shi X B, et al. Constrained martensitic transformation in nanocrystalline NiTi/NbTi shape memory composites[J]. Journal of Alloys and Compounds, 2013, 577(S1): 749-751. [6]Hao S J, Cui L S, Wang Y D, et al. The ultrahigh mechanical energy-absorption capability evidenced in a high-strength NbTi/NiTi nanocomposite[J]. Applied Physics Letters, 2011, 99: 024102-1-024102-3. [7]Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength[J]. Science, 2013, 339: 1191-1194. [8]姜 江, 蒋小华, 姜大强, 等. 模量可变 NiTi-NbTi 原位复合材料[J]. 中国有色金属学报, 2017, 27(4): 753-760. Jiang Jiang, Jiang Xiaohua, Jiang Daqiang, et al. Modulus variable in-situ NiTi-NbTi composite[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 753-760. [9]姜 江, 蒋小华, 姜大强, 等. NbTi-NiTi 原位复合材料的约束态相变阻尼[J]. 中国有色金属学报, 2017, 27(5): 953-959. Jiang Jiang, Jiang Xiaohua, Jiang Daqiang, et al. Constraint transformation damping behavior of in-situ NbTi-NiTi composite[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(5): 953-959. [10]Jiang J, Jiang D Q, Hao S J, et al. A nano lamella NbTi-NiTi composite with high strength[J]. Materials Science and Engineering A, 2015, 633: 121-124. [11]Piao M, Miyazaki S, Otsuka K, et al. Effects of Nb addition on the microstructure of Ti-Ni alloys[J]. Materials Transactions JIM, 1992, 33(4): 337-345. [12]Mehrabi K, Banmanpour H, Shokuhfar A, et al. Infiuence of chemical composition and manufacturing conditions on properties of NiTi shape memory alloys[J]. Materials Science and Engineering A, 2008, 481-482: 693-696. [13]Hsieh S F, Wu S K, Lin H C, et al. Transformation sequence and second phases in ternary Ti-Ni-W shape memory alloys with less than 2at%W[J]. Journal of Alloys and Compounds, 2005, 387: 121-127. [14]袁志山, 石世威, 吝德智, 等. TiNiW合金微观结构与相变特性研究[J]. 金属功能材料, 2017(2): 26-30. Yuan Zhishan, Shi Shiwei, Zhi Dezhi, et al. Study on the microstructure and phase transition of TiNiW shape memory alloy[J]. Metallic Functional Materials, 2017(2): 26-30. [15]Buenconsejo P J S, Zarnetta R, Robert Z, et al. A new prototype two-phase (TiNi)-(β-W) SMA system with tailorable thermal hysteresis[J]. Advanced Functional Materials, 2011, 21(1): 113-118. [16]Li H F, Cong Y, Zheng Y F, et al. In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity[J]. Materials Science and Engineering C, 2016, 60: 554-559. [17]Wang Z G, Zu X T. Effect of incomplete transformation on the transformation behavior in NiTi shape memory alloys[J]. Journal of Materials Science, 2005, 40: 2663-2665. [18]Zheng Y F, Huang B M, Zhang J X, et al. The microstructure and linear superelasticity of cold-drawn TiNi alloy[J]. Materials Science and Engineering A, 2000, 279: 25-35. |