[1]员 霄, 王 井, 朱青海, 等. H13钢的铁基和钴基熔覆层组织与耐磨性[J]. 焊接学报, 2018, 39(12): 105-109. Yuan Xiao, Wang Jing, Zhu Qinghai, et al. Microstructure and abrasion resistance of Fe-based and Co-based coatings of AISI H13[J]. Transactions of the China Welding Institution, 2018, 39(12): 105-109. [2]杨晓红, 杭文先, 秦绍刚, 等. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J]. 吉林大学学报(工学版), 2017, 47(3): 891-899. Yang Xiaohong, Hang Wenxian, Qin Shaogang, et al. Microstructure and wear properties of Co-based composite coatings on H13 steel surface by laser cladding[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3): 891-899. [3]叶 宏, 喻文新, 雷临萍, 等. H13钢激光熔覆Co基涂层工艺优化及组织性能[J]. 金属热处理, 2016, 41(12): 117-121. Ye Hong, Yu Wenxin, Lei Linping, et al. Process optimization of Co-based coating on H13 steel by laser cladding and its microstructure and properties[J]. Heat Treatment of Metals, 2016, 41(12): 117-121. [4]Gururaj Telasang, Jyotsna Dutta Majumdar, Nitin Wasekar, et al. Microstructure and mechanical properties of laser clad and post-cladding tempered AISI H13 tool steel[J]. Metallurgical and Materials Transactions A , 2015, 46(5): 2309-2321. [5]陈菊芳, 李小平, 薛亚平. 45钢表面激光熔覆Fe901合金的摩擦磨损性能[J]. 中国激光, 2019, 46(5): 326-334. Chen Jufang, Li Xiaoping, Xue Yaping. Friction and wear properties of laser cladding Fe901 alloy coating on 45 steel surface[J]. Chinese Journal of Lasers, 2019, 46(5): 326-334. [6]刘海青, 葛 超, 王志文, 等. 激光熔覆复合涂层裂纹控制研究进展[J]. 金属热处理, 2018, 43(8): 228-232. Liu Haiqing, Ge Chao , Wang Zhiwen, et al. Research progress on crack control of laser clad composite coating[J]. Heat Treatment of Metals, 2018, 43(8): 228-232. [7]于希辰, 王志文, 刘海青, 等. 后热处理对激光熔覆涂层应用的研究进展[J]. 金属热处理, 2019, 44(3): 114-119. Yu Xichen, Wang Zhiwen, Liu Haiqing, et al. Research progress of application of post heat-treatment on laser cladded coatings[J]. Heat Treatment of Metals, 2019, 44(3): 114-119. [8]Zhou S, Zeng X, Hu Q, et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization[J]. Applied Surface Science, 2008, 255(5): 1646-1653. [9]Parisa Farahmand, Radovan Kovacevic. Laser cladding assisted with an induction heater (LCAIH) of Ni-60%WC coating[J]. Journal of Materials Processing Technology, 2015, 222: 244-258. [10]Song W, Zhu P, Cui K. Effect of Ni content on cracking susceptibility and microstructure of laser-clad FeCrNiBSi alloy[J]. Surface and Coatings Technology, 1996, 80(3): 279. [11]Song W, Echigoya J, Zhu B, et al. Effects of Co on the cracking susceptibility and the microstructure of Fe-Cr-Ni laser-clad layer[J]. Surface and Coatings Technology, 2001, 138(2): 291-295. [12]王玉玲, 张翔宇, 孙树峰, 等. 稀土对激光熔覆3540Fe基合金涂层组织与性能的影响[J]. 金属热处理, 2018, 43(3): 100-103. Wang Yuling, Zhang Xiangyu, Sun Shufeng, et al. Effect of rare earth on microstructure and properties of laser cladding 3540Fe-based alloy layer[J]. Heat Treatment of Metals, 2018, 43(3): 100-103. [13]蔡川雄, 刘洪喜, 蒋业华, 等. 交变磁场对激光熔覆Fe基复合涂层组织结构及其耐磨性的影响[J]. 摩擦学学报, 2013, 33(3): 229-235. Cai Chuanxiong, Liu Hongxi, Jiang Yehua, et al. Influence of AC magnetic field on microstructure and wear behaviors of laser cladding Fe-based composite coating[J]. Tribology, 2013, 33(3): 229-235. [14]曹亚男, 张艳梅, 揭晓华, 等. 钢表面激光熔覆镍基合金涂层裂纹控制的研究[J]. 热加工工艺, 2012, 41(18): 133-136. Cao Yanan, Zhang Yanmei, Jie Xiaohua, et al. Study on control of crack in laser cladding Ni-based coating on steel[J]. Hot Working Technology, 2012, 41(18): 133-136. [15]Dubourg L, St-Georges L. Optimization of laser cladding process using taguchi and EM methods for MMC coating production[J]. Journal of Thermal Spray Technology, 2006, 15(4): 790-795. [16]吴祖鹏. Ni60A合金激光熔覆裂纹气孔控制方法研究[D]. 大连: 大连理工大学, 2019. Wu Zupeng. Study on crack and porosity control methods of laser cladding Ni60A alloy coating[D]. Dalian : Dalian University of Technology, 2019. [17]Fu F, Zhang Y, Chang G, et al. Analysis on the physical mechanism of laser cladding crack and its influence factors[J]. Optik - International Journal for Light and Electron Optics, 2016, 127(1): 200-202. [18]Kou S. Welding Metallurgy[M]. Canada: John Wiley and Sons Inc, 2003: 163-166. [19]李林起, 姚成武, 黄 坚, 等. 激光熔覆高硬度铁基涂层枝晶间残余奥氏体相特征[J]. 中国激光, 2017, 44(3): 136-142. Li Linqi, Yao Chengwu, Huang Jian, et al. Characteristics of interdendritic residual austenite in laser cladding of high hardness iron-based coating[J]. Chinese Journal of Lasers, 2017, 44(3): 136-142. [20]严 凯, 陈长军, 张 敏, 等. 激光增材制造H13钢及回火处理的组织和性能[J]. 中国表面工程, 2017, 30(2): 134-142. Yan Kai, Chen Changjun, Zhang Min, et al. Microstructure and properties of laser additive manufacturing and tempered H13 steel[J]. China Surface Engineering, 2017, 30(2): 134-142. [21]陈 静, 杨海欧, 李延民, 等. 激光快速成形过程中熔覆层的两种开裂行为及其机理研究[J]. 应用激光, 2002, 22(3): 300-304. Chen Jing, Yang Haiou, Li Yanmin, et al. The research on two kinds of cracking behavior and mechanism of cladding in rapid laser forming process[J]. Applied Laser, 2002, 22(3): 300-304. [22]陈 静, 林 鑫, 王 涛, 等. 316L不锈钢激光快速成形过程中熔覆层的热裂机理[J]. 稀有金属材料与工程, 2003, 32(3): 183-186. Chen Jing, Lin Xin, Wang Tao, et al. The hot cracking mechanism of 316L stainless steel cladding in rapid laser forming process[J]. Rare Metal Materials and Engineering, 2003, 32(3): 183-186. [23]张 磊, 陈小明, 刘 伟, 等. 激光熔覆Ni基合金裂纹的形成机理及敏感性[J]. 激光与光电子学进展, 2019, 56(11): 176-183. Zhang Lei, Chen Xiaoming, Liu Wei, et al. Formation mechanism and sensitivity of cracks in laser-cladded Ni-based-alloy coatings[J]. Laser and Optoelectronics Progress, 2019, 56(11): 176-183. |