[1]肖美立, 艾百运, 姚 斐, 等. 激光选区熔化Ti-6Al-4V合金工艺参数对致密度及显微硬度的影响[J]. 热加工工艺, 2019, 48(6): 105-108. Xiao Meili, Ai Baiyun, Yao Fei, et al. Influences of technological parameters on compactness and microhardness of selective laser melted Ti-6Al-4V titanium alloy[J]. Hot Working Technology, 2019, 48(6): 105-108. [2]赵志国, 柏 林, 李 黎, 等. 激光选区熔化成形技术的发展现状及研究进展[J]. 航空制造技术, 2014(19): 46-49. Zhao Zhiguo, Bo Lin, Li Li, et al. Status and progress of selective laser melting forming technology[J]. Aeronautical Manufacturing Technology, 2014(19): 46-49. [3]丁 莉, 李怀学, 王玉岱, 等. 热处理对激光选区熔化成形316不锈钢组织与拉伸性能的影响[J]. 中国激光, 2015, 42(4): 1-7. Ding Li, Li Huaixue, Wang Yudai, et al. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(4): 1-7. [4]李俊峰, 魏正英, 卢秉恒. 钛及钛合金激光选区熔化技术的研究进展[J]. 激光与光电子进展, 2018, 55(1): 011403. Li Junfeng, Wei Zhengying, Lu Bingheng. Research progress on technology of selective laser melting of titanium and titanium alloys[J]. Laser and Optoelectronics Progress, 2018, 55(1): 011403. [5]朱加雷, 王 凯, 马桂殿, 等. TC4钛合金激光选区熔化成形性能研究[J]. 应用激光, 2017, 37(6): 793-800. Zhu Jialei, Wang Kai, Ma Guidian, et al. Study on TC4 titanium alloy selective laser melting forming mechanical properties[J]. Applied Laser, 2017, 37(6): 793-800. [6]梁晓康, 董 鹏, 陈济轮, 等. 激光选区熔化成形Ti-6Al-4V钛合金的显微组织及性能[J]. 应用激光, 2014, 34(2): 101-104. Liang Xiaokang, Dong Peng, Chen Jilun, et al. Microstructure and mechanical properties of selective laser melting Ti-6Al-4V alloy[J]. Applied Laser, 2014, 34(2): 101-104. [7]Markhoff J, Wieding J, Weissmann V, et al. Influence of different three-dimensional open porous titanium scaffold designs on human osteoblasts behavior in static and dynamic cell investigations[J]. Materials, 2015(8): 5490-5507. [8]吴根丽, 刘婷婷, 张长东, 等. Ti6Al4V激光选区熔化成形悬垂结构的质量研究[J]. 中国机械工程, 2016, 27(13): 1810-1815. Wu Genli, Liu Tingting, Zhang Changdong, et al. Research on forming quality of overhanging structure by selective laser melting[J]. China Mechanical Engineering, 2016, 27(13): 1810-1815. [9]Feng Q, Tang Q, Soe S, et al. An investigation into the quasi-static response of Ti6Al4V lattice structures manufactured using selective laser melting[J]. Sustainable Design and Manufacturing, 2016, 52: 399-409. [10]孙健峰. 激光选区熔化Ti6Al4V可控多孔结构制备及机理研究[D]. 广州: 华南理工大学, 2013. Sun Jianfeng. Research on fabrication and forming mechanism of controllable porous structure of Ti6Al4V based on selective laser melting[D]. Guangzhou: South China University of Technology, 2013. [11]肖振楠, 刘婷婷, 廖文和, 等. 激光选区熔化成形TC4钛合金热处理后微观组织和力学性能[J]. 中国激光, 2017, 44(9): 0902001. Xiao Zhennan, Liu Tingting, Liao Wenhe, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment[J]. Chinese Journal of Lasers, 2017, 44(9): 0902001. [12]柯林达, 殷 杰, 朱海红, 等. 钛合金薄壁件选区激光熔化应力演变的数值模拟[J]. 金属学报, 2020, 56(3): 374-384. Ke Linda, Yin Jie, Zhu Haihong, et al. Numerical simulation of stress evolution of thin-wall titanium parts fabricated by selective laser melting[J]. Acta Metallurgica Sinica, 2020, 56(3): 374-384. [13]杨晶晶. 激光选区熔化成形Ti-6Al-4V合金的组织演变及调控[D]. 武汉: 华中科技大学, 2017. Yang Jingjing. Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2017. |