[1]曾小勤. 稀土镁合金研究与应用进展[J]. 稀土信息, 2016(2): 26-29. [2]闫 凡, 徐 健, 张 星, 等. 双级时效对变形2A12铝合金组织与性能的影响[J]. 金属热处理, 2020, 45(4): 99-104. Yan Fan, Xu Jian, Zhang Xing, et al. Effect of two-stage aging on microstructure and properties of deformed 2A12 aluminum alloy[J]. Heat Treatment of Metals, 2020, 45(4): 99-104. [3]王战华. 固溶和时效对三种 Mg-Gd-Y合金组织与性能的影响[D]. 西安: 西安工业大学, 2015. Wang Zhanhua. Effect of solution and aging on microstructure and properties of three kinds of Mg-Gd-Y alloys[D]. Xi'an: Xi'an Technological University, 2015. [4]魏 迪, 杨 莉, 张尧成, 等. 热处理对挤压态Al-Zn-Mg-Cu合金显微组织和力学性能的影响[J]. 金属热处理, 2020, 45(5): 152-156. Wei Di, Yang Li, Zhang Yaocheng, et al. Effect of heat treatment on microstructure and mechanical properties of extruded Al-Zn-Mg-Cu alloy[J]. Heat Treatment of Metals, 2020, 45(5): 152-156. [5]陈金生. 新型高合金化7xxx系铝合金淬火敏感性研究[D]. 北京: 北京有色金属研究总院, 2017. Chen Jinsheng. Quench sensitivity of novel 7xxx series aluminum alloys with high alloying content[D].Beijing: General Research Institute for Nonferrous Metals, 2017. [6]温 柳. 6082和6061铝合金淬火敏感性及微观组织研究[D]. 长沙: 中南大学, 2014. Wen Liu. Investigation of quench sensitivity and microstructure of 6082 and 6061 aluminum alloys[D]. Changsha: Central South University, 2014. [7]Milkereit B, Wanderka N, Schick C, et al. Continuous cooling precipitation diagrams of Al-Ng-Si alloys[J]. Materials Science and Engineering A, 2012, 550: 87-96. [8]杨力祥, 肖 旅, 周海涛, 等. 高强耐热稀土镁合金研究进展[J]. 上海航天, 2019, 36(2): 38-44. Yang Lixiang, Xiao Lü, Zhao Haitao, et al. Current development of high-strength heat-resistant rare earth magnesium alloy[J]. Aerospace Shanghai, 2019, 36(2): 38-44. [9]唐定骧. 稀土镁合金的研发和应用[C]//中国稀土产业发展工程科技论坛专家报告集. 中国工程院化工、冶金与材料工程学部: 中国稀土学会, 2005: 9. [10]肖 遥. 高强Mg-Gd-Y-Zn-Zr合金组织和性能的研究[D]. 重庆: 重庆大学, 2015. Xiao Yao. Study on the microstructure and properties of high-strength Mg-Gd-Y-Zn-Zr alloy[D]. Chongqing: Chongqing University, 2015. [11]姚 祎. 高强度Mg-Gd-Y-Zn系镁合金及其强化机制的研究[D]. 西安: 西安理工大学, 2019. Yao Yi. Study of high strength Mg-Gd-Y-Zn alloy and its strengthening mechanisms[D]. Xi'an: Xi'an University of Technology, 2019. [12]Du Yue, Zhang Zhimin, Zhang Guanshi, et al. Grain refinement and texture evolution of Mg-Gd-Y-Zn-Zr alloy processed by repetitive usetting-extrusion at decreasing temperature[J]. Rare Metal Materials and Engineering, 2018, 47(5): 1422-1428. [13]Yu Zijian, Xu Chao, Meng Jian, et al. Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions[J]. Materials Science and Engineering A, 2018, 713: 234-243. [14]Xu Chao, Zheng Mingyi, Wu Kun, et al. Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg-Gd-Y-Zn-Zr alloy[J]. Materials Science and Engineering A, 2013, 559: 364-370. [15]黄 崧. 高性能Mg-RE-TM系镁合金中LPSO相和沉淀硬化相的复合强韧化研究[D]. 重庆: 重庆大学, 2016. Huang Song. Study of composite strengthening and toughening mechanism of high-strength Mg-RE-TM alloys with LPSO phase and precipitation hardening phase[D]. Chongqing: Chongqing University, 2016. [16]He Shangming, Zeng Xiaoqing, Gao Xiang, et al. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250 ℃[J]. Journal of Alloys and Compounds, 2006, 421(1/2): 309-313. [17]Li Ting, Zhang Kai, Du Zhiwei, et al. Characterization of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy[J]. Journal of Rare Earths, 2013, 31(4): 410-414. [18]曾小勤, 朱庆春, 李扬欣, 等. 镁合金中的第二相颗粒强化[J]. 中国材料进展, 2019, 38(3): 193-204, 250. Zeng Xiaoqin, Zhu Qinchun, Li Yangxin, et al. Second phase particle strengthening in magnesium alloy[J]. Materials China, 2019, 38(3): 193-204, 250. [19]Nie Jianfeng. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia, 2003, 48(8): 1009-1015. [20]Li Bing, Teng Bugang, Chen Guanxi. Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy[J]. Materials Science and Engineering A, 2019, 744(28): 396-405. [21]Ardell A J. Precipitation hardening[J]. Metallurgical Transactions A,1985, 16(12): 2131-2165. [22]Nabarro F R N. The statistical problem of hardening[J]. Journal of the Less Common Metals, 1972, 28(2): 257-276. |