[1]瓮金鹏, 储双杰, 张理扬, 等. 热镀锌高强钢的研究进展[J]. 材料保护, 2012, 45(8): 40-44. [2]吴俊琳, 余仲兴, 朱永达. 微量添加元素对热镀锌层性能的影响[J]. 上海有色金属, 2001, 22(2): 54-58. [3]林 源, 袁训华, 岳崇锋, 等. 热镀锌铝镁镀层的组织和耐蚀性能[J]. 金属热处理, 2014, 39(4): 31-36. Lin Yuan, Yuan Xunhua, Yue Chongfeng, et al. Microstructure and corrosion resistance of hot dip Zn-Al-Mg coating[J]. Heat Treatment of Metals, 2014, 39(4): 31-36. [4]许 倩, 赵云龙, 王 滕, 等. 热浸镀工艺对低碳钢铝锌硅镀层表面形貌及组织的影响[J]. 金属热处理, 2018, 43(7): 215-219. Xu Qian, Zhao Yunlong, Wang Teng, et al. Influence of hot dipping on surface morphology and microstructure of Al-Zn-Si coating on low carbon steel[J]. Heat Treament of Metals, 2018, 43(7): 215-219. [5]贺志荣. Al和Mg对热镀锌层组织和摩擦学性能的影响[J]. 材料保护, 2015, 48(7): 42-44. [6]Su Feng, Zhang Pingze, Wei Dongbo. Corrosion behavior of hot-dip Al-Zn coating doped with Si, RE, and Mg during exposure to sodium chloride containing environments[J]. Materials and Corrosion, 2018, 69: 714-724. [7]杨亚晴, 魏文龙, 刘灿楼. 高耐蚀热浸镀锌合金镀层[J]. 金属热处理, 2018, 43(1): 111-115. Yang Yaqing, Wei Wenlong, Liu Canlou. High corrosion resistance of new hot dip galvanizing alloy coating[J]. Heat Treatment of Metals, 2018, 43(1): 111-115. [8]Manna M, Naidu G, Rani N, et al. Characterisation of coating on rebar surface using hot-dip Zn and Zn-4.9A1-0.1 mischmetal bath[J]. Surface and Coming Technology, 2007(7): 1-7. [9]卢锦堂, 江爱华, 车淳山, 等. 热浸Zn-Al合金镀层的研究进展[J]. 材料保护, 2008, 41(7): 48-49. [10]何 应. 热浸镀Zn-Al-RE合金镀层的制备和性能研究[D]. 汉中: 陕西理工学院, 2014. He Ying. Study on fabrication and properties of Zn-Al-RE hot-dip galvanized alloy coatings[D]. Hanzhong: Shaanxi University of Technology, 2014. [11]田亚强, 张 源, 魏英立, 等. 热浸镀55%Al-Zn-1.6%Si合金钢板镀层表面形貌及组织特征研究[J]. 材料导报, 2015, 29(2): 124-128. Tian Yaqiang, Zhang Yuan, Wei Yingli, et al. Study on the coating structure characteristics and surface morphology of hot-dip 55%Al-Zn-1.6%Si alloy on the steel substrate[J]. Materials Reports, 2015, 29(2): 124-128. [12]Zhao Manxiu, Cai Yangsheng, Yin Fucheng, et al. Effect and controlling mechanism of vanadium on Fe-Al interface reaction in Al-Zn bath[J]. Surface and Coatings Technology, 2016, 306: 108-417. [13]Xie Yiye, Du An, Zhao Xue, et al. Effect of Mg on Fe-Al interface structure of hot-dip galvanized Zn-Al-Mg alloy coatings[J]. Surface and Coatings Technology, 2018, 337: 313-320. [14]Min Ting, Gao Yimin, Huang Xiaoyu. Effects of aluminum concentration on the formation of inhibition layer during hot-dip galvanizing[J]. International Journal of Heat and Mass Transfer, 2018, 127: 394-402. [15]Li Zhifeng, He Yongquan, Cao Guangming. Effects of Al contents on microstructure and properties of hot-dip Zn-Al alloy coatings on hydrogen reduced hot-rolled steel without acid pickling[J]. Journal of Iron and Steel Research, International, 2017, 24: 1032-1040. [16]刘力恒, 车淳山, 孔 纲, 等. 热镀Zn-0.2%Al镀层中Fe-Al抑制层失稳机理及其热力学评估[J]. 金属学报, 2016(5): 614-624. Liu Liheng, Che Chunshan, Kong Gang, et al. Destabilization mechanism of Fe-Al inhibition layer in Zn-0.2%Al hot-dip galvanizing coating and related thermodynamic evaluation[J]. Acta Metallurgica Sinica, 2016(5): 614-624. [17]Chen L, Fourmentin R, Dermid J R M. Morphology and kinetics of interfacial layer formation during continuous hot-dip galvanizing and galvannealing[J]. Metallurgical and Materials Transactions A, 2008, 39(9): 2128-2142. |