金属热处理 ›› 2020, Vol. 45 ›› Issue (7): 231-237.DOI: 10.13251/j.issn.0254-6051.2020.07.048

• 数值模拟 • 上一篇    下一篇

大长径比薄壁壳体零件真空气淬畸变行为的数值模拟

张小娟1, 张建1, 倪林彧1, 周钟平1, 章军2, 黎军顽2, 闵永安2   

  1. 1. 上海新力动力设备研究所, 上海 200240;
    2. 上海大学 材料科学与工程学院, 上海 200072
  • 收稿日期:2020-01-05 出版日期:2020-07-25 发布日期:2020-09-07
  • 通讯作者: 黎军顽, 教授, 博士, E-mail:lijunwan@shu.edu.cn
  • 作者简介:张小娟(1986—), 女, 高级工程师, 硕士, 主要研究方向为金属材料及其热处理, E-mail:20926061@zju.edu.cn。
  • 基金资助:
    国家青年科学基金(51401117)

Numerical simulation on distortion behavior of large diameter ratio thin-walled shell during high pressure gas quenching

Zhang Xiaojuan1, Zhang Jian1, Ni Linyu1, Zhou Zhongping1, Zhang Jun2, Li Junwan2, Min Yongan2   

  1. 1. Shanghai Space Propulsion Technology Research Institute, Shanghai 200240, China;
    2. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
  • Received:2020-01-05 Online:2020-07-25 Published:2020-09-07

摘要: 建立了30Cr3SiNiMoVA钢大长径比薄壁壳体零件的金属-热-力耦合有限元数值分析模型,通过反传热计算获得了壳体不同位置表面综合换热系数曲线,研究了真空气淬过程中薄壁壳体零件的温度场和组织场的演变规律,并对其畸变行为进行了详细分析。研究表明:同一换热面上的冷速大小为薄壁部位>顶部>台阶部位,且阳面的温度变化更为剧烈;应力演变曲线均出现两个峰值,第一个峰值是由温度差异导致的热应力引起的,第二个峰值是由马氏体转变产生的组织应力引起的;淬火之后,阳面高度增加了2.08 mm,增加幅度为0.082%,阴面高度增加了2.33 mm,增加幅度为0.092%,薄壁位置处外径增加了0.81 mm,增加幅度为0.270%,台阶位置处外径增加了0.57 mm, 增加幅度为0.186%。实测结果与模拟结果相符,误差小于10%。

关键词: 薄壁壳体, 真空气淬, 金属-热-力耦合, 畸变行为

Abstract: A theoretical framework of metal-thermal-force coupled model of the large diameter ratio thin-walled shell was established,which is made of 30Cr3SiNiMoVA steel. The heat transfer coefficient curve at different positions was calculated through inverse heat transfer method. The distortion behavior was investigated though analyzing the evolution of the temperature field and the structure field during high pressure gas quenching process. The results show that the cooling speed on the same heat exchange surface of the shell is thin-walled position greater than top than step in the middle, and the temperature in the positive side changes more sharply. There are two peak values of the stress curves, the first one is due to the heat stress induced by the temperature, and the second one is due to the structure stress induced by the martensitic transformation. After quenching, the height of the positive side and negative side are increased by 2.08 mm (0.082%) and 2.33 mm (0.092%) respectively, and the outer diameter at the thin wall position and step in the middle are increased by 0.81 mm (0.270%) and 0.57 mm (0.186%), respectively. The measured results are basically in agreement with the simulation, and the error is less than 10%.

Key words: thin-walled shell, vacuum gas quenching, metal-thermal-force coupling, deformation behavior

中图分类号: