[1]Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminum alloys for the automotive industry[J]. Materials Science and Engineering A, 2000, 280(1): 37-49. [2]Hirsch J. Recent development in aluminum for automotive applications[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 1995-2002. [3]刘钊扬, 熊柏青, 张永安, 等. 汽车车身板用6A16铝合金拉深深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125. Liu Zhaoyang, Xiong Baiqing, Zhang Yongan. Study on correlation between metal flow and microstructure of deep drawing test of 6A16 aluminum alloy for automobile body panel[J]. Materials Review, 2020, 34(8): 8119-8125. [4]Markushev M V. On the principles of the deformation methods of aluminum-alloys grain refinement to ultrafine size: I. Fine-grained alloys[J]. The Physics of Metals and Metallography, 2009, 108(1): 43-49. [5]Engler O, Hirsch J. Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications-A review[J]. Materials Science and Engineering A, 2002, 336(1/2): 249-262. [6]Bennett T A, Petrov R H, Kestens L A I. Effect of particles on texture banding in an aluminium alloy[J]. Scripta Materialia, 2010, 62(2): 78-81. [7]Di Russo E, Conserva M, Buratti M, et al. A new thermo-mechanical procedure for improving the ductility and toughness of Al-Zn-Mg-Cu alloys in the transverse directions[J]. Materials Science and Engineering, 1974, 14(1): 23-36. [8]Lademo O G, Pedersen K O, Berstad T, et al. An experimental and numerical study on the formability of textured AlZnMg alloys[J]. European Journal of Mechanics A, 2008, 27(2): 116-140. [9]Tajally M, Emadoddin E. Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets[J]. Materials and Design, 2011, 32(3): 1594-1599. [10]Jiang F L, Zurob H S, Purdy G R, et al. Characterizing precipitate evolution of an Al-Zn-Mg-Cu based commercial alloy during artificial aging and non-isothermal heat treatments by in situ electrical resistivity monitoring[J]. Materials Characterization, 2016, 117: 47-56. [11]Guo W, Guo J Y, Wang J D, et al. Evolution of precipitate microstructure during stress aging of an Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2015, 634: 167-175. [12]徐长征, 王庆娟, 黄美权, 等. 冷变形Cu-0.36Cr(wt%)合金的抗软化性能和再结晶行为[J]. 金属热处理, 2007, 32(5): 38-42. Xu Changzheng, Wang Qingjuan, Huang Meiquan, et al. Softening resistant performance and recrystallization behavior of cold-deformed Cu-0.36Cr(wt%) alloy[J]. Heat Treatment of Metals, 2007, 32(5): 38-42. [13]Kumar M, Ross N G. Influence of temper on the performance of a high-strength Al-Zn-Mg alloy sheet in the warm forming processing chain[J]. Journal of Materials Processing Technology, 2016, 231: 189-198. [14]Ghiaasiaan R, Amirkhiz B S, Shankar S. Quantitative metallography of precipitating and secondary phases after strengthening treatment of net shaped casting of Al-Zn-Mg-Cu (7000) alloys[J]. Materials Science and Engineering A, 2017, 698: 206-217. |