[1]Feng D, Zhang X M, Liu S D, et al. The effect of pre-ageing temperature and retrogression heating rate on the microstructure and properties of AA7055[J]. Materials Science and Engineering A, 2013, 588: 34-42. [2]Liu L L, Pan Q L, Wang X D, et al. The effects of aging treatments on mechanical property and corrosion behavior of spray formed 7055 aluminium alloy[J]. Journal of Alloys and Compounds, 2018, 735: 261-276. [3]Wanhill R J H, Bray G H. Aerostructural design and its application to aluminum-lithium alloys[M]//Aluminum-Lithium Alloys. Butterworth-Heinemann, 2014: 27-58. [4]罗 杰, 吕正风, 张 华, 等. 7050铝合金回归再时效工艺(RRA)研究[J]. 铝加工, 2016(2): 14-19. Luo Jie, Lü Zhengfeng, Zhang Hua, et al. Study on regression re-aging process(RRA) of 7050 alloy[J]. Aluminium Fabrication, 2016(2): 14-19. [5]黄乐瑜, 张新明, 刘胜胆, 等. 回归处理对7055铝合金组织和性能的影响[J]. 热加工工艺, 2012, 41(2): 178-182. Huang Leyu, Zhang Xinming, Liu Shengdan, et al. Effect of retrogression stage on microstructure and mechanical property of 7055 alloy[J]. Hot Working Technology, 2012, 41(2): 178-182. [6]Es-Said O S, Frazier W E, Lee E W. The effect of retrogression and reaging on the properties of the 7249 aluminum alloy[J]. JOM, 2003, 55(1): 45-48. [7]李念奎, 凌 杲, 聂 波, 等. 铝合金材料及其热处理技术[M]. 北京: 冶金工业出版社, 2012. [8]蒋云泽, 张 豪, 许俊华. 回归再时效对喷射成形7055铝合金组织和力学性能的影响[J]. 热加工工艺, 2016, 45(4): 233-236. Jiang Yunze, Zhang Hao, Xu Junhua. Effects of retrogression and re-aging on microstructure and mechanical properties of spray formed 7055 Al alloy[J]. Hot Working Technology, 2016, 45(4): 233-236. [9]Yu H, Wang M, Sheng X, et al. Microstructure and tensile properties of large-size 7055 aluminum billets fabricated by spray forming rapid solidification technology[J]. Journal of Alloys and Compounds, 2013, 578: 208-214. [10]Godinho H A, Beletati A L R, Giordano E J, et al. Microstructure and mechanical properties of a spray formed and extruded AA7050 recycled alloy[J]. Journal of Alloys and Compounds, 2014, 586(S1): 139-142. [11]Dixit M, Mishra R S, Sankaran K K. Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys[J]. Materials Science and Engineering A, 2008, 478(1/2): 163-172. [12]Danh N C, Rajan K, Wallace W. A TEM study of microstructural changes during retrogression and reaging in 7075 aluminum[J]. Metallurgical Transactions A, 1983, 14(9): 1843-1850. [13]陈军洲. AA7055铝合金的时效析出行为与力学性能[D]. 哈尔滨: 哈尔滨工业大学, 2009. Chen Junzhou. Ageing precipitation behavior and mechanical properties of AA7055 aluminum alloy[D]. Harbin: Harbin Institute of Technology, 2009. [14]Shercliff H R, Ashby M F. A process model for age hardening of aluminium alloys—I. The model[J]. Acta Metallurgica et Materialia, 1990, 38(10): 1789-1802. [15]Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2010, 58(14): 4814-4826. [16]Rajan K, Wallace W, Beddoes J C. Microstructural study of a high-strength stress-corrosion resistant 7075 aluminium alloy[J]. Journal of Materials Science, 1982, 17(10): 2817-2824. [17]Viana F, Pinto A M P, Santos H M C, et al. Retrogression and re-ageing of 7075 aluminium alloy: Microstructural characterization[J]. Journal of Materials Processing Technology, 1999, 92: 54-59. [18]Rometsch P A, Zhang Y, Knight S. Heat treatment of 7xxx series aluminium alloys—Some recent developments[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2003-2017. [19]Yang W, Ji S, Zhang Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η′ precipitate[J]. Materials and Design, 2015, 85: 752-761. [20]Xu D K, Birbilis N, Rometsch P A. The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150[J]. Corrosion Science, 2012, 54: 17-25. [21]Knight S P, Birbilis N, Muddle B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2010, 52(12): 4073-4080. |