[1]刘 兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705-1715. Liu Bing, Peng Chaoqun, Wang Richu, et al. Recent development and prospects for giant plant aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705-1715. [2]Zhang Xuesong, Chen Yongjun, Hu Junling. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97: 22-34. [3]Shin Jesik, Kim Taehyeong, Kim Dongeung, et al. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications[J]. Journal of Alloys and Compounds, 2017, 698: 577-590. [4]Peng Guosheng, Chen Kanhua, Chen Songyi, et al. Evolution of the second phase particles during the heating-up process of solution treatment of Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2015, 641: 237-241. [5]Zou Xiuliang, Yan Hong, Chen Xiaohui. Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(10): 2146-2155. [6]韩成府, 岑少起, 路王珂, 等. 固溶处理对7075铝合金组织和力学性能的影响[J]. 特种铸造及有色合金, 2017, 37(2): 201-204. Han Chengfu, Cen Shaoqi, Lu Wangke, et al. Influences of solution treatment on microstructure and mechanical properties of 7075 aluminum alloy[J]. Special Casting and Nonferrous Alloys, 2017, 37(2): 201-204. [7]Fan Shitong, Deng Yunlai, Zhang Jin, et al. Calculation and experimental study on heating temperature field of super-high strength aluminum alloy thick plate[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2415-2422. [8]张铁桥, 丁恒敏, 浦吕春. 7050铝合金零件淬火过程中温度场及热应力场的模拟研究[J]. 热加工工艺, 2013, 42(6): 149-152. Zhang Tieqiao, Ding Hengmin, Pu Lüchun. Simulation research on temperature field and thermal stress field of 7050 aluminum alloy part in quenching preocess[J]. Hot Working Technology, 2013, 42(6): 149-152. [9]吴 垠, 江雄心. 7075铝合金锻件淬火热处理有限元模拟[J]. 热加工工艺, 2012, 41(12): 177-180. Wu Yin, Jiang Xiongxin. Finite element simulation of quenching process for 7075 Al alloy[J]. Hot Working Technology, 2012, 41(12): 177-180. [10]刘 庄, 吴景之, 张 毅, 等. 热处理过程的数值模拟[M]. 北京: 科学出版社, 1996. [11]雷文光, 毛小南, 卢亚锋, 等. TC21钛合金锻件淬火过程温度场及热应力场数值模拟[J]. 稀有金属材料与工程, 2011, 40(10): 1721-1726. Lei Wenguang, Mao Xiaonan, Lu Yafeng, et al. Numerical simulation of temperature field and thermal stress field in quenching process of TC21 titanium alloy forging[J]. Rare Metal Materials and Engineering, 2011, 40(10): 1721-1726. [12]姚灿阳. 7050铝合金厚板淬火温度场及内应力场的数值模拟研究[D]. 长沙: 中南大学, 2007. [13]刘 坚, 毛大恒, 湛利华. 2124铝合金超厚板热轧过程温度场的数值模拟[J]. 机械工程材料, 2009, 33(1): 86-89. Liu Jian, Mao Daheng, Zhan Lihua. Numerical simulation of temperature field in hot rolling process of extra-thick plates of 2124 aluminum alloy[J]. Materials for Mechanical Engineering, 2009, 33(1): 86-89. [14]王金亮, 刘嘉辰, 陈慧琴. Al-Zn-Mg-Cu系高强铝合金厚板淬火过程数值模拟[J]. 金属热处理, 2014, 39(3): 130-133. Wang Jinliang, Liu Jiachen, Chen Huiqin. Numerical simulation of quenching process of Al-Zn-Mg-Cu high strength aluminum alloy thick plate[J]. Heat Treatment of Metals, 2014, 39(3): 130-133. [15]Muammer Koc, John Culp, Taylan Altan. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes[J]. Journal of Materials Processing Technology, 2006, 174: 342-354. |