[1]方 江, 赵永明, 卢洪涛, 等. 核电站蒸汽管道弯头裂纹分析[J]. 金属热处理, 2019, 44(S1): 425-428. Fang Jiang, Zhao Yongming, Lu Hongtao, et al. Cracking analysis of steam piping elbow in nuclear power plant[J]. Heat Treatment of Metals, 2019, 44(S1): 425-428. [2]Dong L J, Ma C, Peng Q J, et al. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. Journal of Materials Science and Technology, 2020, 40: 1-14. [3]Li C L, Shu G G, Liu W, et al. The unified model for irradiation embrittlement prediction of reactor pressure vessel[J]. Annals of Nuclear Energy, 2020, 139: 1-6. [4]Ma J, Liu J S, Guo Z. Establishment of a two-stage constitutive model based on dislocation density theory for as-forged SA508 Gr.3Cl.1[J]. Materials Research Express, 2020, 7(2): 1-14. [5]Ming H L, Zhang Z M, Wang J Q, et al. Microstructure of a domestically fabricated dissimilar metal weld joint (SA508-52M-309L-CF8A) in nuclear power plant[J]. Materials Characterization, 2019, 148: 100-115. [6]Liu H L, Li Q L. Dislocation density evaluation of three commercial SA508Gr.3 steels for reactor pressure vessel[J]. Materials Science and Engineering, 2019, 490(2): 1-7. [7]Das A, Sunil S, Kapoor R. Effect of cooling rate on the microstructure of a pressure vessel steel[J]. Metallography Microstructure, and Analysis, 2019, 8: 795-805. [8]康 涛, 郭 杰, 周 伟, 等. 退火温度对冷轧DP980钢力学性能的影响[J]. 金属热处理, 2019, 45(1): 6-10. Kang Tao, Guo Jie, Zhou Wei, et al. Effect of annealing temperature on mechanical properties of cold-rolled DP980 steel[J]. Heat Treatment of Metals, 2019, 45(1): 6-10. [9]王 博, 白星良, 战东平, 等. 回火温度对12MnNiVR压力容器钢板组织和性能的影响[J]. 金属热处理, 2019, 44(9): 189-193. Wang Bo, Bai Xingliang, Zhan Dongping, et al. Effect of the tempering temperature on microstructure and mechanical properties of 12MnNiVR pressure vessel steel[J]. Heat Treatment of Metals, 2019, 44(9): 189-193. [10]Oriani R A, Josephic P H. Equilibrium aspects of hydrogen-induced cracking of steels[J]. Acta Metallurgica, 1974, 22(9): 1065-1074. [11]Ren X C, Chu W Y, Su Y J, et al. Effects of atomic hydrogen and flaking on mechanical properties of wheel steel[J]. Metallurgical and Materials Transactions A, 2007, 38(5): 1004-1011. [12]Liang Y, Sofronis P, Aravas N. On the effect of hydrogen on plastic instabilities in metals[J]. Acta Materialia, 2003, 54(9): 2717-2730. [13]刘贵立. 钛金属应力腐蚀机理电子理论研究[J]. 物理学报, 2006, 55(4): 1983-1986. Liu Guili. Electronic theoretical study of stress corrosion mechanism of Ti metal[J]. Acta Physica Sinica, 2006, 55(4): 1983-1986. [14]Symons D M, Yong G A, Scully J R. The effect of strain on the trapping of hydrogen at grain-boundary carbides in Ni-Cr-Fe alloys[J]. Metallurgical and Materials Transactions A, 2001, 32(2): 369-377. [15]冯 端. 金属物理学[M]. 北京: 科学出版社, 2000: 100-110. [16]王 征, 王禹华, 李连杰, 等. 氢在钢中晶格间隙和氢陷阱之间的扩散模式[J]. 材料的开发与应用, 2009(8): 85-89. Wang Zheng, Wang yuhua, Li Lianjie, et al. Hydrogen diffusion models between lattice interstitial sites and hydrogen trapping sites in the steel[J]. Development and Application of Materials, 2009(8): 85-89. [17]褚武扬. 氢损伤与滞后断裂[M]. 北京: 冶金工业出版社, 1988: 190-195. [18]Cortie M B, Garrett G G. A comparison of fatigue crack growth of three alloy steels at elevated temperature[J]. Theoretical and Applied Fracture Mechanics, 1989, 11(1): 9-19. [19]Tien J K, Thompson A W, Bernstein I M. Hydrogen transport by dislocations[J]. Metallurgical Transactions A, 1976, 7(6): 6821-6830. |