[1]黄 瓯, 余 炎. 我国百万千瓦级以上核电汽轮机组现状及发展[J]. 发电设备, 2010(5): 309-314. Huang Ou, Yu Yan. Current status and development tendency of domestic 1000 MW nuclear power turbines[J]. Power Equipment, 2010(5): 309-314. [2]谢永慧, 张 荻, 吴 君, 等. 核电汽轮机末级长叶片振动特性研究进展[J]. 热力透平, 2015, 44(4): 17-26. Xie Yonghui, Zhang Di, Wu Jun, et al. A review for vibration characteristics of last stage blade in nuclear power steam turbines[J]. Thermal Turbine, 2015, 44(4): 17-26. [3]魏宝明. 金属腐蚀理论及应用[M]. 北京: 化学工业出版社, 1984: 1-8. [4]吴宇坤, 周敬恩. 汽轮机叶片常见失效方式及研究现状[J]. 汽轮机技术, 1995, 37(6): 362-366. [5]许 倩, 惠卫军, 龙晋明, 等. 回火温度对60Si2MnA弹簧钢高周疲劳性能的影响[J]. 金属热处理, 2012, 37(8): 15-19. Xu Qian, Hui Weijun, Long Jinming, et al. Effect of tempering temperature on high-cycle fatigue properties of 60Si2MnA spring steel[J]. Heat Treatment of Metals, 2012, 37(8): 15-19. [6]康国政, 阚前华. 工程材料的棘轮行为和棘轮-疲劳交互作用[M]. 成都: 西南交通大学出版社, 2014: 4-5. [7]杨金艳, 成亚维, 许均渊. 60Si2Mn钢S钩的疲劳断裂失效分析[J]. 材料保护, 2018, 51(8): 145-147. Yang Jinyan, Cheng Yawei, Xu Junyuan. Failure analysis on fatigue fracture of S hook in 60Si2Mn steel[J]. Materials Protection, 2018, 51(8): 145-147. [8]陈培哲. 60Si2Mn材质弹条疲劳断裂原因分析[J]. 城市轨道交通研究, 2016, 19(2): 114-116. Chen Peizhe. Analysis of the fatigue fracture of 60Si2Mn spring strip[J]. Urban Mass Transit, 2016, 19(2): 114-116. [9]朱应波. 低碳硅锰弹簧钢的特性与应用[J]. 金属热处理, 1991, 16(5): 38-40. [10]叶圣渊, 徐道送, 徐旋旋, 等. 60Si2MnA钢弹簧断裂失效分析[J]. 物理测试, 2018, 36(5): 44-47. Ye Shengyuan, Xu Daosong, Xu Xuanxuan, et al. Fracture failure analysis of 60Si2MnA spring steel[J]. Physics Examination and Testing, 2018, 36(5): 44-47. [11]王升勋. 汽车弹簧钢60Si2MnA热处理过程及力学性能研究[J]. 铸造技术, 2013, 34(10): 1296-1299. Wang Shengxun. Research on heat treatment process and mechanical properties of car spring steel 60Si2MnA[J]. Foundry Technology, 2013, 34(10): 1296-1299. [12]Huang X P, Huang J L, Wu J F, et al. Friction and wear behavior on 60Si2Mn steel used the heat treatment process with plant material[C]//2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2011: 4977-4981. [13]张迎晖, 杨泰胜, 贺玲慧, 等. 热轧及冷却工艺对60Si2Mn弹簧钢带状组织的影响[J]. 材料导报, 2015(1): 420-422. Zhang Yinghui, Yang Taisheng, He Linghui, et al. Effect of hot rolling and cooling process on banded structure of 60Si2Mn spring steel[J]. Materials Reports, 2015(1): 420-422. [14]潘金芝, 任瑞铭, 郭立波, 等. 淬火对60Si2Mn组织及力学性能的影响[J]. 热加工工艺, 2010, 39(22): 146-148. Pan Jinzhi, Ren Ruiming, Guo Libo, et al. Effect of quenching on microstructure and mechanical properties of 60Si2Mn steel[J]. Hot Working Technology, 2010, 39(22): 146-148. [15]Ai J H, Zhao T C, Gao H J, et al. Effect of controlled rolling and cooling on the microstructure and mechanical properties of 60Si2MnA spring steel rod[J]. Journal of Materials Processing Technology, 2005, 160(3): 390-395. [16]刘春明, 王建军, 林仁荣, 等. 微量碳在钢铁材料细晶强化中的作用[J]. 材料科学与工艺, 2001, 9(3): 301-304. Liu Chunming, Wang Jianjun, Lin Renrong, et al. Role of small amounts of carbon in fine-grain strengthening of steels[J]. Materials Science and Technology, 2001, 9(3): 301-304. [17]刘丽华, 丁伟中. 60Si2Mn弹簧钢脱碳的研究[J]. 热处理, 2005, 20(3): 6-10. Liu Lihua, Ding Weizhong. Study on the decarburization of spring steel 60Si2Mn[J]. Heat Treatment, 2005, 20(3): 6-10. [18]于学森, 沈 奎, 江卓俊, 等. 弹簧钢60Si2MnA表面脱碳规律研究[J]. 热加工工艺, 2017, 46(24): 224-227. Yu Xuesen, Shen Kui, Jiang Zhuojun, et al. Study on surface decarburization law of spring steel 60Si2MnA[J]. Hot Working Technology, 2017, 46(24): 224-227. [19]刘运娜, 刘献达. 60Si2Mn弹簧钢脱碳行为研究[J]. 金属热处理, 2019, 44(S1): 115-118 [20]Yu W W, Liu H, Jia W Q, et al. Investigation of heterogeneous ratcheting of a GTAW welded joint for primary coolant piping[J]. Materials Testing, 2019, 61(10): 947-951. |