金属热处理 ›› 2020, Vol. 45 ›› Issue (9): 248-256.DOI: 10.13251/j.issn.0254-6051.2020.09.047

• 设备 • 上一篇    下一篇

真气垫炉内漂浮换热过程数值模拟及结构优化

张家元, 李苹, 曾祺   

  1. 中南大学 能源科学与工程学院,湖南 长沙 410083
  • 收稿日期:2020-03-27 出版日期:2020-09-25 发布日期:2020-12-29
  • 作者简介:张家元(1968—),男,教授,博士,主要研究方向为热工设备仿真模拟,E-mail:zjyzhq@csu.edu.cn

Numerical simulation of floating heat transfer process and structure optimization of air cushion furnace

Zhang Jiayuan, Li Ping, Zeng Qi   

  1. School of Energy Science and Engineering,Central South University,Changsha Hunan 410083,China
  • Received:2020-03-27 Online:2020-09-25 Published:2020-12-29

摘要: 气垫炉是一种薄板材热处理用先进设备,基于某铝厂设计的气垫炉结构,建立气垫炉整体的三维计算模型,运用流固耦合FSI分析法对炉内板材漂浮换热过程进行模拟。模拟结果表明,板材换热基本均匀,但板材向下畸变过大,无法实现正常漂浮。为减少板材畸变,在优选空间内采用正交试验法优化气垫炉喷嘴布置参数,并采用响应面法与遗传算法优化气垫炉导流装置结构参数。结果表明,装置优化后板材上下表面的风量、压力分布更为合理,炉内板材畸变量从110.3 mm降低至41.4 mm,板材漂浮得以实现。

关键词: 气垫炉, 漂浮换热, 正交试验, 响应面法, 遗传算法, 结构优化

Abstract: Air cushion furnace is a kind of advanced equipment for heat treatment of thin aluminum alloy sheet.Based on the structure of air cushion furnace designed by an aluminum factory,a three-dimensional calculation model of the whole air cushion furnace was established.And floating heat transfer process of sheet in this furnace was simulated by means of fluid-solid coupling FSI analysis method.The results show that the heat transfer in the furnace is basically uniform,but the downward distortion of the sheet is too large to achieve normal floatation.In order to reduce the sheet distortion,orthogonal experiments were used to optimize the nozzle layout parameters of the air cushion furnace in the optimum space,and the structure parameters of the air cushion furnace diversion device were optimized based on response surface and genetic algorithm.The results show that the air flow and pressure distribution on the upper and lower surfaces of the plate are more reasonable after optimization.The distortion of the sheet in the furnace is reduced from 110.3 mm to 41.4 mm,and the floatation of the sheet is realized.

Key words: air cushion furnace, floating heat transfer, orthogonal experiment, response surface methodology, genetic algorithm, structure optimization

中图分类号: