[1]Jr W M G. Ultrahigh-strength steels for aerospace applications[J]. JOM, 1990, 42(5): 20-24. [2]胡正飞, 王春旭. 二次强化高CoNi超高强度合金钢的研究近况[J]. 钢铁研究学报, 2001, 13(4): 62-68. Hu Zhengfei, Wang Chunxu. Recent status of enriched CoNi ultra-high strength steel with secondary hardening[J]. Journal of Iron and Steel Research, 2001, 13(4): 62-68. [3]厉 勇, 王春旭, 黄顺喆, 等. 超高强度钢中M2C和β-NiAl相的复合析出强化行为[J]. 金属热处理, 2018, 43(6): 50-54. Li Yong, Wang Chunxu, Huang Shunzhe, et al. Combined precipitation strengthening behavior of M2C carbides and β-NiAl intermetallics in ultrahigh strength steel[J]. Heat Treatment of Metals, 2018, 43(6): 50-54. [4]Ayer R, Machmeier P M. Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100[J]. Metallurgical Transactions A, 1993, 24(9): 1943-1955. [5]Fine M E, Vaynman S, Isheim D, et al. A new paradigm for designing high-fracture-energy steels[J]. Metallurgical and Materials Transactions A, 2010, 41(13): 3318-3325. [6]Olson G B. System design of hierarchically structured materials[J]. Science, 1997, 277(5330): 1237-1242. [7]Raabe D, Ponge D, Dmitrieva O, et al. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility[J]. Scripta Materialia, 2009, 60(12): 1141-1144. [8]Jiang S, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Science Foundation in China, 2017, 544(2): 460-464. [9]Olson G B, Azrin M, Wright E S. Innovations in Ultrahigh-strength Steel Technology[M]. US Army Laboratory Command, Materials Technology Laboratory. 1987: 89-112. [10]Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness[J]. Materials Science and Engineering A, 2019, 759(24): 298-302. [11]Wang Chunxu, Gao Yuanhang, Li Yong, et al. Effects of solid-solution temperature on microstructure and mechanical properties of a novel 2000 MPa grade ultra-high-strength steel[J]. Journal of Iron and Steel Research International, 2020(6): 710-718. [12]Erlach S D, Leitener H, Bischof M, et al. Comparison of NiAl precipitation in a medium carbon secondary hardening steel and C-free PH13-8 maraging steel[J]. Materials Science and Engineering A, 2006, 429(1/2): 96-106. [13]Raghavan Ayer, Machmeier P M. Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels[J/OL]. Metallurgical and Materials Transactions A, 1996, 27(9). https://doi.org/10.1007/BF02652345 [14]Ayer R, Machmeier P. On the characteristics of M2C carbides in the peak hardening regime of Aermet 100 steel[J]. Metallurgical and Materials Transactions A, 1998, 29(3): 903-905. [15]Delagnes D, Pettinari-Sturmel F, Mathon M H, et al. Cementite-free martensitic steels: A new route to develop high strength/high toughness grades by modifying the conventional precipitation sequence during tempering[J]. Acta Materialia, 2012, 60(16): 5877-5888. [16]Speich G R, Dabkowski D S, Porter L F. Strength and toughness of Fe-10Ni alloys containing C, Cr, Mo, and Co[J]. Metallurgical Transactions, 1973, 4(1): 303-315. [17]Tomita Y. Improved lower temperature fracture toughness of ultrahigh strength 4340 steel through modified heat treatment[J]. Metallurgical Transactions A, 1987, 18(8): 1495-1501. |