[1]Chen J K, Spencer C W, Ekstrand M E, et al. Eutectoid decomposition in Ag-Ga[J]. Metallurgical and Materials Transactions A, 1996, 27(6): 1683-1689. [2]Lvanisenko Yu, Lojkowski W, Valiew R Z, et al. The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion[J]. Acta Materialia, 2003, 51(18): 5555-5570. [3]Doi S N, Kestenbach Hans-Jürgen. Determination of the pearlite nodule size in eutectoid steels[J]. Metallography, 1989, 23(2): 135-146. [4]Elwazri A M, Wanjara P, Yue S. The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel[J]. Materials Science and Engineering A, 2005, 404(1/2): 91-98. [5]Alexander D J, Bernstein I M. Cleavage fracture in pearlitic eutectoid steel[J]. Metallurgical Transactions A, 1989, 20(11): 2321-2335. [6]Hu Jun, Du Linxiu, Wang Jianjun, et al. Cooling process and mechanical properties design of hot-rolled low carbon high strength microalloyed steel for automotive wheel usage[J]. Materials and Design, 2014, 53: 332-337. [7]Modi O P, Deshmukh N, Mondal D P, et al. Effect of interlamellar spacing on the mechanical properties of 0.65%C steel[J]. Materials Characterization, 2001, 46(5): 347-352. [8]李俊杰, Andrew G, 刘 伟. 奥氏体化与冷却速率对过共析钢组织的影响[J]. 金属学报, 2013, 49(5): 583-592. Li Junjie, Andrew G, Liu Wei. Effect of austenitization and cooling rates on the microstructure in a hypereutectoid steel[J]. Acta Metallurgica Sinica, 2013, 49(5): 583-592. [9]Fernández-vicente A, Carsí M, Peñalba F, et al. The fracture toughness of an ultrahigh carbon steel containing 1.5wt%C[J]. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29(9/10): 817-828. [10]Xu Jinqiao, Liu Yazheng, Zhou Shumei. Calculation models of interlamellar spacing of pearlite in high-speed 82B rod[J]. Journal of Iron and Steel Research International, 2008, 15(4): 57-60. [11]吴庆辉, 杨忠民, 陈 颖, 等. 相变温度对珠光体轨钢组织和性能的影响[J]. 热加工工艺, 2012, 41(10): 67-70. Wu Qinghui, Yang Zhongmin, Chen Ying, et al. Effect of transformation temperature on microstructure and properties of fully pearlite rail steel[J]. Hot Working Technology, 2012, 41(10): 67-70. [12]梁 宇, 余凌峰, 梁益龙. 珠光体钢微观组织与拉伸性能关系[J]. 材料热处理学报, 2013, 34(7): 73-77. Liang Yu, Yu Linfeng, Liang Yilong. Relationship between microstructure and tensile properties of a pearlitic steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(7): 73-77. [13]田新中. 形变温度和冷却方式对中碳钢显微组织及拉拔性能的影响[J]. 河北冶金, 2017(6): 1-7. Tian Xinzhong. Effect of deformation temperature and cooling mode on microstructure and drawing properties of medium carbon steel[J]. Hebei Metallurgical, 2017(6): 1-7. [14]魏泽民, 梁 宇, 梁益龙, 等. 高碳钢中珠光体片层与先共析铁素体对断裂韧性的影响[J]. 材料热处理学报, 2016, 37(1): 126-132. Wei Zemin, Liang Yu, Liang Yilong, et al. Influence of pearlite lamination and proeutectoid ferrite on fracture toughness in high carbon steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(1): 126-132. [15]陈彦佐. 擦伤对车轮材料磨损及滚动接触疲劳的影响研究[D]. 成都: 西南交通大学, 2018. [16]曾东方. 高速铁路车轮钢磨损和滚动接触疲劳性能的改善方法研究[D]. 成都: 西南交通大学, 2017. [17]Zhou Y, Peng J F, Wang W J, et al. Slippage effect on rolling contact wear and damage behavior of pearlitic steels[J]. Wear, 2016, 362-363: 78-86. [18]易 平. 高速列车车轮钢磨损模拟试验研究[D]. 成都: 西南交通大学, 2011. [19]Perez-Unzueta A J, Beynon J H. Microstructure and wear resistance of pearlitic rail steels[J]. Wear, 1993, 162-164: 173-182. [20]Ma L, Shi L B, Guo J, et al. On the wear and damage characteristics of rail material under low temperature environment condition[J]. Wear, 2018, 394-395: 149. [21]Zeng Dongfang, Lu Liantao, Zhang Ning, et al. Effect of different strengthening methods on rolling/sliding wear of ferrite-pearlite steel[J]. Wear, 2016, 358-359: 62-71. [22]Donzella G, Faccoli M, Mazzù A, et al. Progressive damage assessment in the near-surface layer of railway wheel-rail couple under cyclic contact[J]. Wear, 2011, 271 (1/2): 408-416. [23]Lancini M, Bodini I, Vetturi D, et al. Using vibrations to detect high wear rates in rolling contact fatigue tests[J]. Acta Imeko, 2015, 4(4): 66-74. [24]Mazzù A, Petrogalli C, Faccoli M. An integrated model for competitive damage mechanisms assessment in railway wheel steels[J]. Wear, 2015, 322-323: 181-191. [25]郭 辉. 超细贝氏体钢低温相变加速技术及其塑性变形规律[D]. 北京: 北京科技大学, 2018. [26]孙宜强, 陈雪艳, 张 萍, 等. 72A 盘条索氏体体积分数测量方法分析与讨论[J]. 物理测试, 2015, 33(5): 25-28. Sun Yiqiang, Chen Xueyan, Zhang Ping, et al. Analysis and discussion of measurement method of 72A steel wire rod[J]. Physics Examination and Testing, 2015, 33(5): 25-28. [27]张 超, 郭 辉, 王家星, 等. 等温淬火温度对超细贝氏体钢组织及耐磨性的影响[J]. 工程科学学报, 2018, 40(12): 1502-1509. Zhang Chao, Guo Hui, Wang Jiaxing, et al. Effect of isothermal quenching temperature on microstructure and wear resistance of ultrafine bainite steel[J]. Journal of Engineering Science, 2018, 40(12): 1502-1509. |