[1]陆世英. 超级不锈钢和高镍耐蚀合金[M]. 北京: 化学工业出版社, 2012. Lu Shiying. Super Stainless Steel and High Nickel Corrosion Resistant Alloy[M]. Beijing: Chemical Industry Press, 2012. [2]郎宇平, 康喜范. 超级高氮奥氏体不锈钢的耐腐蚀性能及氮的影响[J]. 钢铁研究学报, 2001, 13(1): 30-35. Lang Yuping, Kang Xifan. Corrosion resistance of high nitrogen superaustenitic stainless steel and influence of nitrogen[J]. Journal of Iron and Steel Research, 2001, 13(1): 30-35. [3]Liljas M. Superaustenitic stainless steels: Development, fabrication and use[J]. Scandinavian Journal of Metallurgy, 1997, 26: 52-58. [4]班朝磊, 倪俊杰, 沈正军, 等. 316L奥氏体不锈钢金相侵蚀研究[J]. 实验室科学, 2017, 20(6): 13-15. Ban Chaolei, Ni Junjie, Shen Zhengjun, et al. Study on metallographic erosion of 316L austenitic stainless steel[J]. Laboratory Science, 2017, 20(6): 13-15. [5]Anburai J, Mohamed N S S, Narayanan R, et al. Ageing of forged super austenitic stainless steel:Precipitate phases and mechanical properties[J]. Materials Science and Engineering A, 2012, 535: 99-107. [6]Hoxie E C, Tuffnell G W. A summary of corrosion tests in flue gas desulfurization processes[J]. Air Repair, 2012, 26(4): 307-312. [7]郑世平, 于 洋. 6%Mo超级奥氏体不锈钢耐蚀特性及其焊接[J]. 中国化工装备, 2013, 15(4): 26-31. Zheng Shiping, Yu Yang. Corrosion resistance and welding of 6%Mo super austenitic stainless steel[J]. China Chemical Equipment, 2013, 15(4): 26-31. [8]陆世英, 张廷凯, 康喜范. 不锈钢[M]. 北京: 原子能出版社, 1995. [9]尹士科, 刘奇凡, 贾冬玲. 超级奥氏体不锈钢的焊缝组织和性能概述[J]. 机械制造文摘(焊接分册), 2014(5): 24-29. Yin Shike, Liu Qifan, Jia Dongling. Weld microstructure and properties of super austenitic stainless steel[J]. Mechanical Manufacturing Abstract (Welding Volume), 2014(5): 24-29. [10]Seo M, Hultquist G, Leygraf C, et al. The influence of minor alloying elements (Nb, Ti and Cu) on the corrosion resistivity of ferritic stainless steel in sulfuric acid solution[J]. Corrosion Science, 1986, 26(11): 949-955, 957-960. [11]邱文军, 林 刚, 江来珠, 等. 铜对奥氏体抗菌不锈钢性能的影响[J]. 钢铁, 2009, 44(3): 81-84. Qiu Wenjun, Lin Gang, Jiang Laizhu, et al. Effect of copper on properties of austenitic antimicrobial stainless steel[J]. Iron and Steel, 2009, 44(3): 81-84. [12]Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Materials Science and Engineering R, 2009, 65(4): 39-104. [13]Jin K S, Gab H S, Min-Suk O. Effect of metallurgical factors on the pitting corrosion behavior of super austenitic stainless steel weld in an acidic chloride environment[J]. Journal of Materials Research, 2017, 32(7): 1343-1350. [14]张泽宁, 杨吉春, 富晓阳. 高氮低镍奥氏体不锈钢的力学性能及析出相[J]. 金属热处理, 2019, 44(8): 15-20. Zhang Zening, Yang Jichun, Fu Xiaoyang. Mechanical properties and precipitates of high nitrogen and low nickel austenitic stainless steel[J]. Heat Treatment of Metals, 2019, 44(8): 15-20. [15]Balakrishnan M, Anburaj J, Nazirudeen S S M, et al. Influence of intermetallic precipitates on pitting corrosion of high Mo superaustenitic stainless steel[J]. Transactions of the Indian Institute of Metals, 2015(2): 1-13. [16]邵肖静, 吕利鸽, 杜 倩, 等. 非调质钢中MnS夹杂物的热变形行为[J]. 金属热处理, 2018, 43(5): 143-147. Shao Xiaojing, Lü Lige, Du Qian, et al. Thermal deformation behavior of MnS inclusions in non-quenched and tempered steel[J]. Heat Treatment of Metals, 2018, 43(5): 143-147. [17]Sourisseau T, Chauveau E, Baroux B. Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media[J]. Corrosion Science, 2005, 47(5): 1097-1117. |