[1]Yeh Jienwei, Lin Sujien, Chin Tsungshune, et al. Formation of simple crystal structure in Cu-Co-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elments[J]. Metallurgical and Materials Transactions A, 2004, 35: 2533-2536. [2]Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys[J]. Intermetallics, 2014, 46: 131-140. [3]Feuerbacher Michael, Heidelmann Markus, Thomas Carsten. Hexagonal high-entropy alloys[J]. Materials Research Letters, 2014, DOI: 10. 1080/21663831. [4]Gao C Michael, Yeh Jienwei, Liaw K Peter, et al. High-entropy Alloys[M]. Switzerland: Springer, Cham, 2016. [5]Hou J, Zhang M, Ma S, et al. Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling[J]. Materials Science and Engineering A, 2017, 707: 593-601. [6]Gwalani B, Soni V, Lee M, et al. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy[J]. Materials and Design, 2017, 121: 254-260. [7]斯松华, 周方颖, 王建国. 冷轧及热处理对Al0.3CoCrFeNi高熵合金组织及性能的影响[J]. 金属热处理, 2020, 45(3): 103-107. Si Songhua, Zhou Fangying, Wang Jianguo. Effects of cold rolling and heat treatment on microstructure and properties of Al0.3CoCrFeNi high entropy alloy[J]. Heat Treatment of Metals, 2020, 45(3): 103-107. [8]Haase C, Barrales-Mora L A. Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys[J]. Acta Materialia, 2018, 150: 88-103. [9]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [10]Tang Q H, Huang Y, Huang Y Y, et al. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing[J]. Materials Letters, 2015, 151: 126-129. [11]Gwalani B, Choudhuri D, Liu K, et al. Interplay between single phase solid solution strengthening and multi-phase strengthening in the same high entropy alloy[J]. Materials Science and Engineering A, 2020, 771: 138620. [12]张 越, 刘 亮, 商 剑. 退火温度对CoCrFeNiAl高熵合金组织与性能的影响[J]. 金属热处理, 2017, 42(9): 36-39. Zhang Yue, Liu Liang, Shang Jian. Effect of annealing temperature on microstructure and properties of CoCrFeNiAl high entropy alloy[J]. Heat Treatment of Metals, 2017, 42(9): 36-39. [13]唐群华, 蔡小勇, 戴品强, 等. 冷轧Al0.3CoCrFeNi高熵合金退火再结晶组织和织构的演变[J]. 材料科学与工程学报, 2016, 34(4): 530-533. Tang Qunhua, Cai Xiaoyong, Dai Pingqiang, et al. Evolution of microstructure and texture of cold rolling Al0.3CoCrFeNi high-entropy alloy during annealing recrystallization[J]. Journal of Materials Science and Engineering, 2016, 34(4): 530-533. [14]Tang Q, Huang Y, Cheng H, et al. The effect of grain size on the annealing-induced phase transformation in an Al0.3CoCrFeNi high entropy alloy[J]. Materials and Design, 2016, 105: 381-385. [15]Fullman R L, Fisher J C. Formation of annealing twins during grain growth[J]. Journal of Applied Physics, 1951, 22(11): 1350-1355. [16]Barrales-Mora L A, Lü Y, Molodov D A. Experimental determination and simulation of annealing textures in cold rolled TWIP and TRIP steels[J]. Steel Research International, 2011, 82(2): 119-126. [17]Smallman R E, Westmacott K H. Stacking faults in face-centred cubic metals and alloys[J]. Philosophical Magazine, 1957, 2(17): 669-683. [18]Williamson G K, Smallman R E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum[J]. Philosophical Magazine, 1956, 1(1): 34-46. [19]Baker I, Meng F, Wu M, et al. Recrystallization of a novel two-phase FeNiMnAlCr high entropy alloy[J]. Journal of Alloys and Compounds, 2016, 656: 458-464. |