[1]张凤林. 法杰马第二代先进燃料组件[J]. 核动力工程, 1991, 12(5): 73-76. Zhang Fenglin. Second generation of advanced fuel assembly for Fragema[J]. Nuclear Power Engineering, 1991, 12(5): 73-76. [2]杨晓东. AFA 3G及其它高性能燃料组件[J]. 原子能科学技术, 2003, 37(S): 15-20. Yang Xiaodong. AFA 3G and other designs of high performance fuel assemblies[J]. Atomic Energy of Science and Technology, 2003, 37(S): 15-20. [3]赵文金, 周邦新, 苗 志, 等. 我国高性能锆合金的发展[J]. 原子能科学技术, 2005, 39(S): 2-9. Zhao Wenjin, Zhou Bangxin, Miao Zhi, et al. Development of chinese advanced zirconium alloys[J]. Atomic Energy of Science and Technology, 2005, 39(S): 2-9. [4]潘秋红, 黄 瑶, 温晓静, 等. 深冲用工业纯铝板材的各向异性研究[J]. 矿冶工程, 2008, 28(2): 87-90. Pan Qiuhong, Huang Yao, Wen Xiaojin, et al. Anisotropy of deep drawing commercial pure aluminum sheet[J]. Mining and Metallurgical Engineering, 2008, 28(2): 87-90. [5]Granovsky M S, Canay M, Lena E, et al. Experimental investigation of the Zr corner of the ternary Zr-Nb-Fe phase diagram[J]. Journal of Nuclear Materials, 2002, 302(1): 1-8. [6]戴 训, 王朋飞, 王 莹, 等. N36锆合金管棒材第二相研究[J]. 核动力工程, 2017, 38(S1): 13-17. Dai Xun, Wang Pengfei, Wang Ying, et al. Study on second phase particles in N36 alloy claddings and bars[J]. Nuclear Power Engineering, 2017, 38(S1): 13-17. [7]梁建烈, 唐轶媛, 严嘉琳, 等. Zr-Sn-Nb-Fe合金金属间化合物及其α/β相变温度的研究[J]. 材料热处理学报, 2009, 30(1): 32-35. Liang Jianlie, Tang Yiyuan, Yan Jialin, et al. Investigation of intermediate phases and phase transition temperature of α/β in the Zr-Sn-Nb-Fe alloy[J]. Transactions of Materials and Heat Treatment, 2009, 30(1): 32-35. [8]Perez R A, Nakajima H, Dyment F. Diffusion in α-Ti and Zr[J]. Materials Transactions, 2003, 44: 2-13. [9]Isaenkova M G, Perlovich Yu A, Fesenko V A, et al. Regularities of recrystallization of rolled single crystals and polycrystals of zirconium and alloy Zr-1%Nb[J]. The Physics of Metals and Metallography, 2014, 115: 756-764. [10]Chai L J, Luan B F, Murty K L, et al. Twinning during recrystallization cooling in α-Zr alloy[J]. Materials Science and Engineering A, 2013, 576: 320-325. [11]Kearns J J. Thermal expansion and preferred orientation in zircaloy: WAPD-TM-472[R]. United States: Properties and Structure, 1965. [12]Chino Y, Lee J S, Sassa K, et al. Press formability of a rolled AZ31 Mg alloy sheet with controlled texture[J]. Materials Letters, 2006, 60: 173-176. [13]Peters M, Gysler A, Lotjering G. Influence of texture on fatigue properties of Ti-6AI-4V[J]. Metallurgical Transactions A, 1984, 15: 1597-1605. [14]Wang Y N, Huang J C. Texture analysis in hexagonal materials[J]. Materials Chemistry and Physics, 2003, 81: 11-26. [15]Chen T, Chen Z Y, Liu Y, et al. Effects of texture on anisotropy of mechanical properties in annealed Mg-0.6%Zr-1.0%Cd sheets by unidirectional and cross rolling[J]. Materials Science and Engineering A, 2014, 615: 324-330. [16]Song J H, Hong K J, Ha T K, et al. The effect of hot rolling condition on the anisotropy of mechanical properties in Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 2007, 449-451: 144-148. [17]刘二伟, 张喜燕, 陈建伟, 等. Zr-Nb、Zr-Sn-Nb合金轧制板材织构分析[J]. 稀有金属材料与工程, 2012, 41(2): 226-229. Liu Erwei, Zhang Xiyan, Chen Jianwei, et al. Study on the texture of Zr-Nb and Zr-Sn-Nb alloys[J]. Rare Metal Materials and Engineering, 2012, 41(2): 226-229. [18]陈建伟. N18锆合金板材加工过程中微观组织及织构演变的定量研究[D]. 重庆: 重庆大学, 2012. |