[1]程晔锋, 程巨强, 李 晴. 35SiMnMo和42CrMo钢截齿体组织及性能的比较[J]. 煤矿机械, 2019, 40(4): 79-80. Cheng Yefeng, Cheng Juqiang, Li Qing. Comparison of microstructure and properties of 35SiMnMo and 42CrMo steel picks[J]. Coal Mining Machinery, 2019, 40(4): 79-80. [2]杜学芸, 许金宝, 常广青, 等. 42CrMo矿用截齿强化技术的研究与探讨[J]. 热喷涂技术, 2017, 9(4): 72-76. Du Xueyun, Xu Jinbao, Chang Guangqing, et al. Research and discussion of 42CrMo mining pick strengthening technology[J]. Thermal Spray Technology, 2017, 9(4): 72-76. [3]马 壮, 牛晓南. 截齿齿体42CrMo钢散体磨料振动磨损研究[J]. 煤矿机械, 2007(12): 43-45. Ma Zhuang, Niu Xiaonan. Study on vibration and abrasive wear of interstitial 42CrMo steel interstitial abrasive material[J]. Coal Mining Machinery, 2007(12): 43-45. [4]梁 华, 董 良, 韩光普, 等. 42CrMo表面等离子熔覆层组织与性能研究[J]. 煤矿机械, 2014, 35(3): 39-41. Liang Hua, Dong Liang, Han Guangpu, et al. Study on microstructure and properties of plasma cladding layer on 42CrMo surface[J]. Coal Mining Machinery, 2014, 35(3): 39-41. [5]Cui X Y, Wang C B, Kang J J. et al. Influence of the corrosion of saturated saltwater drilling fluid on the tribological behavior of HVOF WC-10Co4Cr coatings[J]. Engineering Failure Analysis, 2016, 71(2): 195-203. [6]Gonzalez J M, Quintero F, Arellano J E. et al. Effects of interactions between solids and surfactants on the tribological properties of water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 391(1): 216-223. [7]邓志强, 石世宏, 周 斌, 等. 不等高弯曲弧形薄壁结构激光熔覆成形[J]. 中国激光, 2017, 44(9): 117-124. Deng Zhiqiang, Shi Shihong, Zhou Bin, et al. Laser cladding forming of curved thin wall structure with unequal height[J]. China Laser, 2017, 44(9): 117-124. [8]翟建华, 刘志杰, 张 勇, 等. 内缸活塞杆的激光熔覆修复[J]. 激光与光电子学进展, 2017, 54(11): 267-274. Zhai Jianhua, Liu Zhijie, Zhang Yong. et al. The laser cladding repair of inner cylinder piston rod[J]. Laser and Optoelectronics Progress, 2017, 54(11): 267-274. [9]徐国建, 李春光, 郭云强, 等. 激光熔覆Stellite-6+VC混合粉末的熔覆层组织[J]. 焊接学报, 2017, 38(6): 73-78. Xu Jianguo, Li Chunguang, Guo Yunqiang, et al. Laser cladding of the cladding layer of Stellite-6+VC mixed powder[J]. Transactions of the China Welding Institution, 2017, 38(6): 73-78. [10]苏 猛. 环形件激光熔覆再制造研究[D]. 秦皇岛: 燕山大学, 2016. Su Meng. Research on laser cladding remanufacturing of ring parts[D]. Qinhuangdao: Yanshan University, 2016. [11]钟晓康, 王幸福, 韩福生. 316L不锈钢表面激光熔覆Stellite-F合金层的电化学腐蚀行为[J]. 金属热处理, 2019, 44(1): 176-179. Zhong Xiaokang, Wang Xingfu, Han Fusheng. Electrochemical corrosion behavior of Stellite-F laser cladding layer on surface of 316L stainless steel[J]. Heat Treatment of Metals, 2019, 44(1): 176-179. [12]陈 江, 刘玉兰. 激光再制造技术工程化应用[J]. 中国表面工程, 2006, 19(S1): 50-55. Chen Jiang, Liu Yulan. Engineering application of laser remanufacturing technology[J]. China Surface Engineering, 2006, 19(S1): 50-55. [13]Hall D S, Standish T E, Behazin M, et al. Corrosion of copper-coated used nuclear fuel containers due to oxygen trapped in a Canadian deep geological repository[J]. Corrosion Engineering, Science and Technology, 2018, 53(4): 309-315. [14]Hocking W H, Lister D H. Corrosion of stellite-6 in lithiated and borated high-temperature water[J]. Surface and Interface Analysis, 2010, 11(1/2): 45-59. [15]Mirzade F. Plane wave propagation in transversely isotropic laser-excited solids[J]. Physica B, 2015, 461:17-22. [16]Davim J P, Oliveira C, Cardoso A. Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA)[J]. Materials and Design, 2008, 29(2): 554-557. |