[1]王敬忠, 刘正东, 包汉生, 等. 中国超超临界电站锅炉关键材料用钢及合金的研究现状[J]. 钢铁, 2015, 50(8): 1-9. Wang Jingzhong, Liu Zhengdong, Bao Hansheng, et al. Study of steel and alloys for ultra-supercritical power plant in China[J]. Iron and Steel, 2015, 50(8): 1-9. [2]田仲良, 陈正宗, 何西扣, 等. 固溶处理对超超临界电站用镍基耐热合金组织及性能的影响[J]. 金属热处理, 2020, 45(3): 97-102. Tian Zhongliang, Chen Zhengzong, He Xikou, et al. Effect of solution treatment on microstructure and mechanical properties of heat-resisting Ni-based[J]. Heat Treatment of Metals, 2020, 45(3): 97-102. [3]李益民, 范长信, 杨百勋, 等. 大型火电机组用新型耐热钢[M]. 北京: 中国电力出版社, 2013: 222-223. [4]刘福广, 李太江, 王艳松, 等. TP310HNbN钢/617焊材焊接接头的显微组织和力学性能[J]. 金属热处理, 2019, 44(2): 63-67. Liu Fuguang, Li Taijiang, Wang Yansong, et al. Microstructure and mechanical properties of TP310HNbN steel/617 filler metal welded joints[J]. Heat Treatment of Metals, 2019, 44(2): 63-67. [5]李新梅, 张忠文, 李 文, 等. 服役后HR3C钢高温持久组织的研究[J]. 热加工工艺, 2019, 48(4): 61-63. Li Xinmei, Zhang Zhongwen, Li Wen, et al. Research on high temperature permanent microstructure of HR3C steel after service[J]. Hot Working Technology, 2019, 48(4): 61-63. [6]张忠文, 李新梅, 杜宝帅, 等. HR3C钢焊接接头700 ℃的蠕变组织演变[J]. 金属热处理, 2015, 40(10): 57-60. Zhang Zhongwen, Li Xinmei, Du Baoshuai, et al. Microstructure evolution of HR3C steel welded joint during creep at 700 ℃[J]. Heat Treatment of Metals, 2015, 40(10): 57-60. [7]Zhu C Z, Yuan Y, Bai J M, et al. Impact toughness of a modified HR3C austenitic steel after long-term thermal exposure at 650 ℃[J]. Materials Science and Engineering A, 2019, 740-741: 71-81. [8]Hu Z F, Zhang Z. Investigation the effect of precipitating characteristics on the creep behavior of HR3C austenitic steel at 650 ℃[J]. Materials Science and Engineering A, 2019, 742: 451-463. [9]沈 琦, 刘鸿国, 唐丽英. 超超临界机组新型不锈钢Super 304H、HR3C运行5400 h后的性能试验[J]. 电力建设, 2009, 30(9): 62-66. Shen Qi, Liu Hongguo, Tang Liying. Study on operation 5400 h' performance test of ESC unit new stainless steel Super 304H and HR3C[J]. Electric Power Construction, 2009, 30(9): 62-66. [10]杜宝帅, 魏玉忠, 张忠文, 等. 高温服役4.2万小时超超临界机组用HR3C钢组织与性能[J]. 材料热处理学报, 2014, 35(12): 84-89. Du Baoshuai, Wei Yuzhong, Zhang Zhongwen, et al. Microstructure and properties of HR3C steel used in ultra-supercritical units after 42 000 h exposure to elevated temperature[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 84-89. [11]王志武, 田 竞, 范德良, 等. HR3C钢服役50 000h后的组织与性能[J]. 金属热处理, 2017, 42(12): 1-6. Wang Zhiwu, Tian Jing, Fan Deliang, et al. Microstructure and properties of HR3C steel after service for 50 000 h[J]. Heat Treatment of Metals, 2017, 42(12): 1-6. [12]罗坤杰, 赵彦芬, 张 路, 等. 超超临界锅炉用奥氏体耐热钢HR3C的脆化机理[J]. 材料热处理学报, 2017, 38(7): 79-86. Luo Kunjie, Zhao Yanfen, Zhang Lu, et al. Embrittlement mechanism of austenitic heat resistant steel HR3C for ultra supercritical boiler[J]. Transactions of Materials and Heat Treatment, 2017, 38(7): 79-86. [13]李 斌, 徐晓伟, 何淑芬. HR3C薄壁弯管泄露失效分析[J]. 热加工工艺, 2015, 44(6): 241-243. Li Bin, Xu Xiaowei, He Shufen. Analysis on leak failure of HR3C thin-walled elbows[J]. Hot Working Technology, 2015, 44(6): 241-243. [14]方园园, 赵 杰, 李晓娜. HR3C钢高温时效过程中的析出相[J]. 金属学报, 2010, 46(7): 844-849. Fang Yuanyuan, Zhao Jie, Li Xiaona, et al. Precipitates in HR3C steel aged at high temperature[J]. Acta Metallurgica Sinica, 2010, 46(7): 844-849. [15]方旭东, 王 岩, 范光伟, 等. 超超临界锅炉材料TP310HCbN (HR3C)持久及析出行为[J]. 材料工程, 2017, 45(6): 112-117. Fang Xudong, Wang Yan, Fan Guangwei, et al. Stress rupture and of precipitation behavior of TP310HCbN (HR3C) for supercritical boilers[J]. Journal of Materials Engineering, 2017, 45(6): 112-117. |